Elimination of parasitic reflections for objects with high transparency in phase measuring deflectometry

被引:18
|
作者
Tao Siwei [1 ]
Yue Huimin [1 ]
Chen Hongli [1 ]
Wang Tianhe [1 ]
Cai Jiawei [1 ]
Wu Yuxiang [2 ]
Liu Yong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
[2] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shanxi, Peoples R China
关键词
Parasitic reflections; Multi-frequency approach; Phase measuring deflectometry; Fringe analysis; Fringe demodulation; FRINGE; PROFILOMETRY; ERROR; MODEL;
D O I
10.1016/j.rinp.2019.102734
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In phase measuring deflectometry (PMD), the existence of parasitic reflections at the rear surface of transparent objects will lead to 'ghosted' fringe patterns, which results in phase error. Accurately extracting the phase from the 'ghosted' fringe patterns is considered as one of the main problems in PMD. Existing phase extraction methods still remain some drawbacks such as high cost of experiment equipment, the existence of ill-conditioned areas and difficulty in setting up a suitable threshold. In this paper, the envelope curve algorithm based on multifrequency approach is proposed to eliminate parasitic reflections. The parasitic reflections were eliminated successfully. The PV and the RMS of the front phase error are 0.1085 rad and 0.0072 rad, and those of the rear phase error are 0.1345 rad and 0.0081 rad respectively in the simulation. Experiments also proved the effectiveness of the proposed algorithm. What's more, the phase information of both the front and the rear surfaces can be attained simultaneously. The proposed algorithm could eliminate parasitic reflections successfully without destroying the tested object or special equipment. Factors which may influence the performance of this algorithm are discussed, and results showed that the proposed method is especially suitable for thick transparent object.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Parasitic reflection elimination using binary pattern in phase measuring deflectometry
    Wang, Ruiyang
    Li, Dahai
    Xu, Kaiyuan
    Zhang, Xinwei
    Luo, Peng
    OPTICS COMMUNICATIONS, 2019, 451 : 67 - 73
  • [2] Review of phase measuring deflectometry
    Huang, Lei
    Idir, Mourad
    Zuo, Chao
    Asundi, Anand
    OPTICS AND LASERS IN ENGINEERING, 2018, 107 : 247 - 257
  • [3] Phase error analysis and reduction in phase measuring deflectometry
    Wu, Yuxiang
    Yue, Huimin
    Yi, Jingya
    Li, Mingyang
    Liu, Yong
    OPTICAL ENGINEERING, 2015, 54 (06)
  • [4] Improved infrared phase measuring deflectometry method for the measurement of discontinuous specular objects
    Chang, Caixia
    Zhang, Zonghua
    Gao, Nan
    Meng, Zhaozong
    OPTICS AND LASERS IN ENGINEERING, 2020, 134
  • [5] Testing an aspheric mirror based on phase measuring deflectometry
    Zhao, Wenchuan
    Su, Xianyu
    Liu, Yuankun
    Zhang, Qican
    OPTICAL ENGINEERING, 2009, 48 (10)
  • [6] Measurement of the Three-Dimensional Shape of Discontinuous Specular Objects Using Infrared Phase-Measuring Deflectometry
    Chang, Caixia
    Zhang, Zonghua
    Gao, Nan
    Meng, Zhaozong
    SENSORS, 2019, 19 (21)
  • [7] Testing an aspheric mirror based on phase measuring deflectometry
    Zhao W.
    Su X.
    Liu Y.
    Zhang Q.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2010, 37 (05): : 1338 - 1341
  • [8] A brief review of the technological advancements of phase measuring deflectometry
    Xu, Yongjia
    Gao, Feng
    Jiang, Xiangqian
    PHOTONIX, 2020, 1 (01)
  • [9] Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry
    Zhang, Zonghua
    Wang, Yuemin
    Huang, Shujun
    Liu, Yue
    Chang, Caixia
    Gao, Feng
    Jiang, Xiangqian
    SENSORS, 2017, 17 (12)
  • [10] Parasitic Reflection Eliminating for Planar Elements Based on Multi-Frequency Phase-Shifting in Phase Measuring Deflectometry
    Huang, Siya
    Liu, Yuankun
    Yu, Xin
    SENSORS, 2024, 24 (04)