SEMANTIC SEGMENTATION USING A UNET ARCHITECTURE ON SENTINEL-2 DATA

被引:2
|
作者
Kotaridis, I [1 ]
Lazaridou, M. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Sch Civil Engn, Lab Photogrammetry Remote Sensing, Thessaloniki 54124, Greece
来源
XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III | 2022年 / 43-B3卷
关键词
CNNs; UNET; superpixel segmentation; !text type='Python']Python[!/text; Sentinel-2; IMAGE; CLASSIFICATION;
D O I
10.5194/isprs-archives-XLIII-B3-2022-119-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper presents the development of a methodological framework, based on deep learning, for the efficient mapping of main land cover classes (built-up, vegetation, barren land, water body) on different urban and suburban landscapes. In particular, the proposed framework integrates the superpixel segmentation (an essential procedure) with deep learning. A combination of spectral bands and indices is introduced to produce optimal results, ensuring adequate discrimination between built-up and barren land classes. A UNET architecture is implemented, which can learn the characteristics of main land cover classes from the input data that can be deployed from a Colab notebook without excessive computational needs. The resulted classifications depict promising accuracy values (above 90%).
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [21] Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models
    Al-Dabbagh, Ali Mahdi
    Ilyas, Muhammad
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [22] SEA ICE SEMANTIC SEGMENTATION WITH SENTINEL-2 DATA BASED ON ADAPTIVE SAMPLE TRAINING ON U-NET NETWORK
    Yin, Zhiyong
    Tang, Yuqi
    Yu, Miao
    Bovolo, Francesca
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 188 - 191
  • [23] An Efficient Approach for Semantic Segmentation of Salt Domes in Seismic Images Using Improved UNET Architecture
    Bodapati J.D.
    Sajja R.K.
    Naralasetti V.
    Journal of The Institution of Engineers (India): Series B, 2023, 104 (03) : 569 - 578
  • [24] Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment
    Baheti, Bhakti
    Innani, Shubham
    Gajre, Suhas
    Talbar, Sanjay
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1473 - 1481
  • [25] Extracting Citrus-Growing Regions by Multiscale UNet Using Sentinel-2 Satellite Imagery
    Li, Yong
    Liu, Wenjing
    Ge, Ying
    Yuan, Sai
    Zhang, Tingxuan
    Liu, Xiuhui
    REMOTE SENSING, 2024, 16 (01)
  • [26] Clouds Classification from Sentinel-2 Imagery with Deep Residual Learning and Semantic Image Segmentation
    Liu, Cheng-Chien
    Zhang, Yu-Cheng
    Chen, Pei-Yin
    Lai, Chien-Chih
    Chen, Yi-Hsin
    Cheng, Ji-Hong
    Ko, Ming-Hsun
    REMOTE SENSING, 2019, 11 (02)
  • [27] AN AUTOMATED SEGMENTATION OF NATURA 2000 HABITATS FROM SENTINEL-2 OPTICAL DATA
    Mikula, Karol
    Urban, Jozef
    Kollar, Michal
    Ambroz, Martin
    Jarolimek, Ivan
    Sibik, Jozef
    Sibikova, Maria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (03): : 1017 - 1032
  • [28] Landslide extraction using a novel empirical method and binary semantic segmentation U-NET framework using sentinel-2 imagery
    Devara, Meghanadh
    Maurya, Vipin Kumar
    Dwivedi, Ramji
    REMOTE SENSING LETTERS, 2024, 15 (03) : 326 - 338
  • [29] DRD-UNet, a UNet-Like Architecture for Multi-Class Breast Cancer Semantic Segmentation
    Ortega-Ruiz, Mauricio Alberto
    Karabag, Cefa
    Roman-Rangel, Edgar
    Reyes-Aldasoro, Constantino Carlos
    IEEE ACCESS, 2024, 12 : 40412 - 40424
  • [30] CLASSIFICATION OF SELECTED CORINE CLASSES USING SENTINEL-2 DATA
    Stara, L.
    Halounova, L.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 175 - 180