SEMANTIC SEGMENTATION USING A UNET ARCHITECTURE ON SENTINEL-2 DATA

被引:2
|
作者
Kotaridis, I [1 ]
Lazaridou, M. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Sch Civil Engn, Lab Photogrammetry Remote Sensing, Thessaloniki 54124, Greece
关键词
CNNs; UNET; superpixel segmentation; !text type='Python']Python[!/text; Sentinel-2; IMAGE; CLASSIFICATION;
D O I
10.5194/isprs-archives-XLIII-B3-2022-119-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper presents the development of a methodological framework, based on deep learning, for the efficient mapping of main land cover classes (built-up, vegetation, barren land, water body) on different urban and suburban landscapes. In particular, the proposed framework integrates the superpixel segmentation (an essential procedure) with deep learning. A combination of spectral bands and indices is introduced to produce optimal results, ensuring adequate discrimination between built-up and barren land classes. A UNET architecture is implemented, which can learn the characteristics of main land cover classes from the input data that can be deployed from a Colab notebook without excessive computational needs. The resulted classifications depict promising accuracy values (above 90%).
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [1] Synthetic Data for Sentinel-2 Semantic Segmentation
    Clabaut, Etienne
    Foucher, Samuel
    Bouroubi, Yacine
    Germain, Mickael
    REMOTE SENSING, 2024, 16 (05)
  • [2] High-Resolution Semantic Segmentation of Woodland Fires Using Residual Attention UNet and Time Series of Sentinel-2
    Shirvani, Zeinab
    Abdi, Omid
    Goodman, Rosa C.
    REMOTE SENSING, 2023, 15 (05)
  • [3] SEMANTIC SEGMENTATION OF OIL WELL SITES USING SENTINEL-2 IMAGERY
    Wu, Hao
    Dong, Hongli
    Wang, Zhibao
    Bai, Lu
    Huo, Fengcai
    Tao, Jinhua
    Chen, Liangfu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6901 - 6904
  • [4] FOREST SEMANTIC SEGMENTATION BASED ON DEEP LEARNING USING SENTINEL-2 IMAGES
    Hizal, C.
    Gulsu, G.
    Akgun, H. Y.
    Kulavuz, B.
    Bakirman, T.
    Aydin, A.
    Bayram, B.
    8TH INTERNATIONAL CONFERENCE ON GEOINFORMATION ADVANCES, GEOADVANCES 2024, VOL. 48-4, 2024, : 229 - 236
  • [5] A Deep Semantic Segmentation Approach to Map Forest Tree Dieback in Sentinel-2 Data
    Andresini, Giuseppina
    Appice, Annalisa
    Malerba, Donato
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17075 - 17086
  • [6] Convolutional neural networks for urban green areas semantic segmentation on Sentinel-2 data
    Pesek, Ondrej
    Brodsky, Lukas
    Halounova, Lena
    Landa, Martin
    Boucek, Tomas
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [7] Band Reconstruction Using a Modified UNet for Sentinel-2 Images
    Neagoe, Iulia Coca
    Faur, Daniela
    Vaduva, Corina
    Datcu, Mihai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6739 - 6757
  • [8] Multi-Category Segmentation of Sentinel-2 Images Based on the Swin UNet Method
    Yao, Junyuan
    Jin, Shuanggen
    REMOTE SENSING, 2022, 14 (14)
  • [9] Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots
    Graf, Lukas
    Bach, Heike
    Tiede, Dirk
    REMOTE SENSING, 2020, 12 (23) : 1 - 19
  • [10] SEMANTIC SEGMENTATION OF BURNED AREAS IN SENTINEL-2 SATELLITE IMAGES USING DEEP LEARNING MODELS
    Ouadou, Anes
    Huangal, David
    Hurt, J. Alex
    Scott, Grant J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6366 - 6369