SEMANTIC SEGMENTATION USING A UNET ARCHITECTURE ON SENTINEL-2 DATA

被引:3
作者
Kotaridis, I [1 ]
Lazaridou, M. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Sch Civil Engn, Lab Photogrammetry Remote Sensing, Thessaloniki 54124, Greece
来源
XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III | 2022年 / 43-B3卷
关键词
CNNs; UNET; superpixel segmentation; !text type='Python']Python[!/text; Sentinel-2; IMAGE; CLASSIFICATION;
D O I
10.5194/isprs-archives-XLIII-B3-2022-119-2022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper presents the development of a methodological framework, based on deep learning, for the efficient mapping of main land cover classes (built-up, vegetation, barren land, water body) on different urban and suburban landscapes. In particular, the proposed framework integrates the superpixel segmentation (an essential procedure) with deep learning. A combination of spectral bands and indices is introduced to produce optimal results, ensuring adequate discrimination between built-up and barren land classes. A UNET architecture is implemented, which can learn the characteristics of main land cover classes from the input data that can be deployed from a Colab notebook without excessive computational needs. The resulted classifications depict promising accuracy values (above 90%).
引用
收藏
页码:119 / 126
页数:8
相关论文
共 25 条
  • [1] Progressing from object-based to object-oriented image analysis
    Baatz, M.
    Hoffmann, C.
    Willhauck, G.
    [J]. Lecture Notes in Geoinformation and Cartography, 2008, 0 (9783540770572): : 29 - 42
  • [2] Bhat Parvaiz A., 2017, International Journal of Sustainable Built Environment, V6, P513, DOI 10.1016/j.ijsbe.2017.10.003
  • [3] Blaschke T, 2004, RE S D I PR, V5, P211, DOI 10.1007/978-1-4020-2560-0_12
  • [4] Geographic Object-Based Image Analysis - Towards a new paradigm
    Blaschke, Thomas
    Hay, Geoffrey J.
    Kelly, Maggi
    Lang, Stefan
    Hofmann, Peter
    Addink, Elisabeth
    Feitosa, Raul Queiroz
    van der Meer, Freek
    van der Werff, Harald
    van Coillie, Frieke
    Tiede, Dirk
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 : 180 - 191
  • [5] A survey on object detection in optical remote sensing images
    Cheng, Gong
    Han, Junwei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 : 11 - 28
  • [6] Chollet F., 2018, DEEP LEARNING PYTHON
  • [7] Efficient graph-based image segmentation
    Felzenszwalb, PF
    Huttenlocher, DP
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) : 167 - 181
  • [8] Object-Based Morphological Profiles for Classification of Remote Sensing Imagery
    Geiss, Christian
    Klotz, Martin
    Schmitt, Andreas
    Taubenboeck, Hannes
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5952 - 5963
  • [9] Comparing Fully Deep Convolutional Neural Networks for Land Cover Classification with High-Spatial-Resolution Gaofen-2 Images
    Han, Zemin
    Dian, Yuanyong
    Xia, Hao
    Zhou, Jingjing
    Jian, Yongfeng
    Yao, Chonghuai
    Wang, Xiong
    Li, Yuan
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (08)
  • [10] Hay GJ, 2006, PROC 1 INT C OBJECT, VXXXVI