CONSTRUCTIVE FORMULATIONS OF RESONANT MAXWELL'S EQUATIONS

被引:9
作者
Pinto, M. Campos [1 ]
Despres, B. [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, CNRS, UMR 7598,Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Maxwell's equations; singular solutions; resonant dielectric tensor; resonant heating; limit absorption principle; manufactured solutions; ABSORPTION; INTERFACE; PLASMAS; FINITE; CORNER;
D O I
10.1137/16M1063198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we propose new constructive weak formulations for resonant time harmonic wave equations with singular solutions. Our approach follows the limiting absorption principle and combines standard weak formulations of PDEs with properties of elementary special functions adapted to the singularity of the solutions, called manufactured solutions. We show the well-posedness of several formulations obtained by these means for the limit problem in dimension one, and propose a generalization in dimension two.
引用
收藏
页码:3637 / 3670
页数:34
相关论文
共 25 条
[11]  
Ciarlet P., 2013, APPL MATH, V130
[12]   T-coercivity: Application to the discretization of Helmholtz-like problems [J].
Ciarlet, Patrick, Jr. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (01) :22-34
[13]  
Costabel M, 2004, OPER THEOR, V147, P241
[14]  
Després B, 2017, J ECOLE POLYTECH-MAT, V4, P177, DOI 10.5802/jep.41
[15]   Hybrid resonance of Maxwell's equations in slab geometry [J].
Despres, Bruno ;
Imbert-Gerard, Lise-Marie ;
Weder, Ricardo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05) :623-659
[16]   Weak solutions to Friedrichs systems with convex constraints [J].
Despres, Bruno ;
Lagoutiere, Frederic ;
Seguin, Nicolas .
NONLINEARITY, 2011, 24 (11) :3055-3081
[17]   T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS [J].
Dhia, Anne-Sophie Bonnet-Ben ;
Chesnel, Lucas ;
Ciarlet, Patrick, Jr. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (06) :1363-1387
[18]  
Godlewski E., 1996, APPL MATH SCI, V118
[19]  
Grisvard P., 1992, RECH MATH APPL, V22
[20]   STABILITY RESULTS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH IMPEDANCE BOUNDARY CONDITIONS [J].
Hiptmair, Ralf ;
Moiola, Andrea ;
Perugia, Ilaria .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2263-2287