Propagation properties and M2 factors of a vortex Airy beam

被引:18
作者
Chen, Rui-Pin [1 ,2 ]
Zhong, Li-Xin [3 ]
Wu, Qiyang [4 ]
Chew, Khian-Hooi [5 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Zhejiang, Peoples R China
[2] S China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Zhejiang Univ Finance & Econ, Sch Finance, Hangzhou 310018, Peoples R China
[4] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[5] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
关键词
Vortex Airy beam; M-2; factor; Moments method;
D O I
10.1016/j.optlastec.2012.03.038
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the propagation properties and M-2 factor of a vortex Airy beam. The expression of M-2 factor as a function of the modulation parameters a(x) and a(y) is analytically obtained. The results indicate that the M-2 factor can achieve minimum M-2=2.33 when a(x)=a(y)=1.026 for the m= 1st order vortex Airy beam. For m=2, the M-2 factor can achieve minimum M-2=7.53 when a(x)=1.601 and a(y)=0.529 (or a(y)=1.601 and a(x)=0.529). These results indicate that the far field divergence of the beam width in the sense of root-mean-square beam is related to modulation parameters a(x) and a(y), and increases with increasing vortex order. Numerical calculations provide an intuitive physical picture for the effect of the modulation parameters on the propagation of the vortex Airy beam. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2015 / 2019
页数:5
相关论文
共 18 条
[1]   Airy-Gauss beams and their transformation by paraxial optical systems [J].
Bandres, Miguel A. ;
Gutierrez-Vega, Julio C. .
OPTICS EXPRESS, 2007, 15 (25) :16719-16728
[2]   Optically mediated particle clearing using Airy wavepackets [J].
Baumgartl, Joerg ;
Mazilu, Michael ;
Dholakia, Kishan .
NATURE PHOTONICS, 2008, 2 (11) :675-678
[3]   M(2) factor of Bessel-Gauss beams [J].
Borghi, R ;
Santarsiero, M .
OPTICS LETTERS, 1997, 22 (05) :262-264
[4]   Self-healing properties of optical Airy beams [J].
Broky, John ;
Siviloglou, Georgios A. ;
Dogariu, Aristide ;
Christodoulides, Demetrios N. .
OPTICS EXPRESS, 2008, 16 (17) :12880-12891
[5]   Nonclassicality of vortex Airy beams in the Wigner representation [J].
Chen, Rui-Pin ;
Ooi, C. H. Raymond .
PHYSICAL REVIEW A, 2011, 84 (04)
[6]   Beam propagation factor of an Airy beam [J].
Chen, Rui-Pin ;
Ying, Chao-Fu .
JOURNAL OF OPTICS, 2011, 13 (08)
[7]   Effect of Kerr nonlinearity on an Airy beam [J].
Chen, Rui-Pin ;
Yin, Chao-Fu ;
Chu, Xiu-Xiang ;
Wang, Hui .
PHYSICAL REVIEW A, 2010, 82 (04)
[8]   Propagation properties of an optical vortex carried by an Airy beam: experimental implementation [J].
Dai, H. T. ;
Liu, Y. J. ;
Luo, D. ;
Sun, X. W. .
OPTICS LETTERS, 2011, 36 (09) :1617-1619
[9]   Propagation dynamics of an optical vortex imposed on an Airy beam [J].
Dai, H. T. ;
Liu, Y. J. ;
Luo, D. ;
Sun, X. W. .
OPTICS LETTERS, 2010, 35 (23) :4075-4077
[10]   Nonlinear generation and manipulation of Airy beams [J].
Ellenbogen, Tal ;
Voloch-Bloch, Noa ;
Ganany-Padowicz, Ayelet ;
Arie, Ady .
NATURE PHOTONICS, 2009, 3 (07) :395-398