One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors

被引:246
作者
Liu, Zhenning [1 ]
Xu, Kongliang [1 ]
Sun, Hang [1 ]
Yin, Shengyan [2 ]
机构
[1] Jilin Univ, Coll Biol & Agr Engn, Minist Educ, Key Lab Bion Engn, Changchun 130022, Jilin, Peoples R China
[2] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
MANGANESE OXIDE NANOSHEETS; ROOM-TEMPERATURE SYNTHESIS; AQUEOUS-SOLUTION; GRAPHENE SHEETS; NANOSTRUCTURES; FABRICATION; DEGRADATION; NANOFLAKES; REDUCTION; NICKEL;
D O I
10.1002/smll.201402222
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A template-free, one-step and one-phase synthesis of single-layer MnO2 nanosheets has been developed via a redox reaction between KMnO4 and sodium dodecyl sulfate (SDS). The successful formation of single-layer MnO2 nanosheets has been confirmed by the characteristic absorption around 374 nm and the typical thickness of similar to 0.95 nm. The slow redox reaction controlled by the gradual hydrolysis of SDS is found to be the key factor for the successful formation of single-layer nanosheets. SDS not only serves as the precursor of dodecanol to reduce KMnO4, but also aids the formation of single-layer MnO2 nanosheets as a structure-inducing agent. The resultant single-layer MnO2 nanosheets possess superior specific capacitance, which can be attributed to the extended surface and high porosity of MnO2 nanosheets on the electrode. The MnO2 nanosheets also show excellent durability, retaining 91% of the starting capacitance after 10 000 charge/discharge cycles. Moreover, the symmetric pseudocapacitor based on the synthesized single-layer MnO2 nanosheets exhibits a high specific capacitance, indicating great potential for real energy storage. Therefore, it has been demonstrated for the first time that a single readily available reagent, SDS, can play multiple roles in reducing KMnO4 to conveniently yield single-layer MnO2 nanosheets as a high-performance pseudocapacitive material.
引用
收藏
页码:2182 / 2191
页数:10
相关论文
共 56 条
[1]   Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite [J].
Al-Ghouti, Mohammad A. ;
Al-Degs, Yehya S. ;
Khraisheh, Majeda A. M. ;
Ahmad, Mohammad N. ;
Allen, Stephen J. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2009, 90 (11) :3520-3527
[2]   Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J].
Beaudrouet, E. ;
La Salle, A. Le Gal ;
Guyomard, D. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1240-1248
[3]   Nanostructured Alkaline-Cation-Containing-MnO2 for Photocatalytic Water Oxidation [J].
Boppana, Venkata Bharat Ram ;
Yusuf, Seif ;
Hutchings, Gregory S. ;
Jiao, Feng .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (07) :878-884
[4]   Ambient Fabrication of Large-Area Graphene Films via a Synchronous Reduction and Assembly Strategy [J].
Cao, Xuebo ;
Qi, Dianpeng ;
Yin, Shengyan ;
Bu, Jing ;
Li, Fengji ;
Goh, Chin Foo ;
Zhang, Sam ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2013, 25 (21) :2957-2962
[5]   Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation [J].
Chacon-Patino, Martha L. ;
Blanco-Tirado, Cristian ;
Hinestroza, Juan P. ;
Combariza, Marianny Y. .
GREEN CHEMISTRY, 2013, 15 (10) :2920-2928
[6]   Nanostructured morphology control for efficient supercapacitor electrodes [J].
Chen, Sheng ;
Xing, Wei ;
Duan, Jingjing ;
Hu, Xijun ;
Qiao, Shi Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (09) :2941-2954
[7]   From Graphene to Metal Oxide Nanolamellas: A Phenomenon of Morphology Transmission [J].
Chen, Sheng ;
Zhu, Junwu ;
Wang, Xin .
ACS NANO, 2010, 4 (10) :6212-6218
[8]   Morphological and Electrochemical Cycling Effects in MnO2 Nanostructures by 3D Electron Tomography [J].
Chen, Wei ;
Rakhi, Raghavan B. ;
Wang, Qingxiao ;
Hedhili, Mohamed N. ;
Alshareef, Husam N. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (21) :3130-3143
[9]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[10]   High-performance electrochemical pseudo-capacitor based on MnO2 nanowires/Ni foam as electrode with a novel Li-ion quasi-ionic liquid as electrolyte [J].
Deng, Ming-Jay ;
Chang, Jeng-Kuei ;
Wang, Cheng-Chia ;
Chen, Kai-Wen ;
Lin, Chih-Ming ;
Tang, Mau-Tsu ;
Chen, Jin-Ming ;
Lu, Kueih-Tzu .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :3942-3946