Integrable mappings of the plane preserving biquadratic invariant curves

被引:39
作者
Iatrou, A [1 ]
Roberts, JAG
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3083, Australia
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 34期
关键词
D O I
10.1088/0305-4470/34/34/308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a general framework to construct integrable mappings of the plane that preserve a one-parameter family B(x, y, K) of biquadratic invariant curves where parametrization by K is very general. These mappings are reversible by construction (i.e. they are the composition of two involutions) and can be shown to be measure preserving. They generalize integrable maps previously given by McMillan and Quispel, Roberts and Thompson. By considering a transformation of the case of the symmetric biquadratic to a canonical form, we provide a normal form for the symmetric integrable map acting on each invariant curve. We give a Lax pair for a large subclass of our symmetric integrable maps, including at least a 10-parameter subfamily of the 12-parameter symmetric Quispel-Roberts-Thompson maps.
引用
收藏
页码:6617 / 6636
页数:20
相关论文
共 20 条
  • [1] ABARENKOVA N, 1998, 9807 PARLPTHE
  • [2] AGUIRREGABIRIA JM, 1998, DYNAMICS SOLVER
  • [3] [Anonymous], THESIS U MELBOURNE
  • [4] A new family of four-dimensional symplectic and integrable mappings
    Capel, HW
    Sahadevan, R
    [J]. PHYSICA A, 2001, 289 (1-2): : 86 - 106
  • [5] CLARKSON PA, 1999, LOND MATH SOC LNS, V255
  • [6] Grammaticos B, 1999, Discrete Painleve equations, The Painleve property, P413
  • [7] HANCOCK H, 1958, ELLIPTIC FUNCTIONS
  • [8] HANCOCK H, 1958, THEORY ELLIPTIC INTE
  • [9] IATROU A, 2001, PREPRINT TROBE MATH
  • [10] KUTZ N, 1996, THESIS TU BERLIN