MIMO Channel Information Feedback Using Deep Recurrent Network

被引:118
作者
Lu, Chao [1 ]
Xu, Wei [1 ]
Shen, Hong [1 ]
Zhu, Jun [2 ]
Wang, Kezhi [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[2] Qualcomm Inc, San Diego, CA 92121 USA
[3] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
关键词
Channel state information (CSI) feedback; recurrent neural network (RNN); multiple-input multiple-output (MIMO);
D O I
10.1109/LCOMM.2018.2882829
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In a multiple-input multiple-output (MIMO) system, the availability of channel state information (CSI) at the transmitter is essential for performance improvement. Recent convolutional neural network (NN)-based techniques show competitive ability in realizing CSI compression and feedback. By introducing a new NN architecture, we enhance the accuracy of quantized CSI feedback in MIMO communications. The proposed NN architecture invokes a module named long short-term memory that admits the NN to benefit from exploiting temporal and frequency correlations of wireless channels. Compromising performance with complexity, we further modify the NN architecture with a significantly reduced number of parameters to be trained. Finally, experiments show that the proposed NN architectures achieve better performance in terms of both CSI compression and recovery accuracy.
引用
收藏
页码:188 / 191
页数:4
相关论文
共 11 条
[1]  
3GPP, 2018, STUD CHANN MOD FREQ
[2]  
[Anonymous], P INT S SIGN CIRC SY
[3]  
[Anonymous], 2009, 25996 3GPP TR
[4]   LSTM: A Search Space Odyssey [J].
Greff, Klaus ;
Srivastava, Rupesh K. ;
Koutnik, Jan ;
Steunebrink, Bas R. ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (10) :2222-2232
[5]  
He K., 2016, P IEEE C COMPUTER VI
[6]   THE COST 2100 MIMO CHANNEL MODEL [J].
Liu, Lingfeng ;
Oestges, Claude ;
Poutanen, Juho ;
Haneda, Katsuyuki ;
Vainikainen, Pertti ;
Quitin, Francois ;
Tufvesson, Fredrik ;
De Doncker, Philippe .
IEEE WIRELESS COMMUNICATIONS, 2012, 19 (06) :92-99
[7]  
Lu C., 2018, P ICCC BEIJ CHIN AUG, P161
[8]  
O'Shea T., 2017, INTRO DEEP LEARNING
[9]   Channel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems [J].
Shen, Wenqian ;
Dai, Linglong ;
Shim, Byonghyo ;
Wang, Zhaocheng ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (11) :5235-5248
[10]  
Wang T., 2018, DEEP LEARNING BASED