General Mixed State Quantum Data Compression with and without Entanglement Assistance

被引:0
作者
Khanian, Zahra Baghali [1 ,2 ]
Winter, Andreas [2 ,3 ]
机构
[1] Barcelona Inst Technol, ICFO, Castelldefels 08860, Spain
[2] Univ Autonoma Barcelona, Dept Fis, Grp Informacio Quant, Bellaterra 08193, Barcelona, Spain
[3] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2020年
关键词
ENTROPY; ENSEMBLES;
D O I
10.1109/isit44484.2020.9174148
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the most general (finite-dimensional) quantum mechanical information source, which is given by a quantum system A that is correlated with a reference system R. The task is to compress A in such a way as to reproduce the joint source state rho(AR) at the decoder with asymptotically high fidelity. This includes Schumacher's original quantum source coding problem of a pure state ensemble and that of a single pure entangled state, as well as general mixed state ensembles. Here, we determine the optimal compression rate (in qubits per source system) in terms of the Koashi-Imoto decomposition of the source into a classical, a quantum, and a redundant part. The same decomposition yields the optimal rate in the presence of unlimited entanglement between compressor and decoder, and indeed the full region of feasible qubit-ebit rate pairs. Full version at arXiv:1912.08506 [1].
引用
收藏
页码:1852 / 1857
页数:6
相关论文
共 20 条
[1]  
Anshu A., 2019, ARXIVQUANTPH19110912
[2]   A sharp continuity estimate for the von Neumann entropy [J].
Audenaert, Koenraad M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8127-8136
[3]   On quantum coding for ensembles of mixed states [J].
Barnum, H ;
Caves, CM ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6767-6785
[4]   General fidelity limit for quantum channels [J].
Barnum, H ;
Fuchs, CA ;
Jozsa, R ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 54 (06) :4707-4711
[5]   Information transmission through a noisy quantum channel [J].
Barnum, H ;
Nielsen, MA ;
Schumacher, B .
PHYSICAL REVIEW A, 1998, 57 (06) :4153-4175
[6]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[7]   CONTINUITY PROPERTY OF ENTROPY DENSITY FOR SPIN-LATTICE SYSTEMS [J].
FANNES, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :291-294
[8]   Cryptographic distinguishability measures for quantum-mechanical states [J].
Fuchs, CA ;
van de Graaf, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1216-1227
[9]   Structure of states which satisfy strong subadditivity of quantum entropy with equality [J].
Hayden, P ;
Jozsa, R ;
Petz, D ;
Winter, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (02) :359-374