An EKF-based nonlinear observer with a prescribed degree of stability

被引:148
作者
Reif, K
Sonnemann, F
Unbehauen, R
机构
[1] BMW AG, D-80788 Munich, Germany
[2] Diehl GmbH, Nurnberg, Germany
[3] Univ Erlangen Nurnberg, Lehrstuhl Allgemeine & Theoret Elektrotech, D-91058 Erlangen, Germany
关键词
extended Kalman filter; exponentially stable; Lyapunov function; nonlinear systems; observers;
D O I
10.1016/S0005-1098(98)00053-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The topic of this article is a nonlinear observer based on a slight modification of the extended Kalman filter. The purpose of this modification is twofold: first the degree of stability can be assigned in advance and secondly this modification allows an effective treatment of the nonlinearities. Using the second method of Lyapunov it is proved that the proposed observer is an exponential observer. To examine the practical usefulness the proposed observer is applied to the highly nonlinear flux and angular velocity estimation problem for induction machines. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1119 / 1123
页数:5
相关论文
共 25 条
  • [1] ANDERSON BD, 1973, LINEAR OPTIMAL CONTR, V5, P217
  • [2] AN ORDINARY DIFFERENTIAL-EQUATION TECHNIQUE FOR CONTINUOUS-TIME PARAMETER-ESTIMATION
    DEWOLF, DG
    WIBERG, DM
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (04) : 514 - 528
  • [3] HIGH-GAIN ESTIMATION FOR NONLINEAR-SYSTEMS
    DEZA, F
    BUSVELLE, E
    GAUTHIER, JP
    RAKOTOPARA, D
    [J]. SYSTEMS & CONTROL LETTERS, 1992, 18 (04) : 295 - 299
  • [4] DIVERGENCE OF KALMAN FILTER
    FITZGERALD, RJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (06) : 736 - +
  • [5] Gelb A., 1984, APPL OPTIMAL ESTIMAT
  • [6] Heuser H, 1990, LEHRBUCH ANAL, V1
  • [7] Jazwinski A.H., 2007, STOCHASTIC PROCESSES
  • [8] KALMAN RE, 1961, ASME, V83, P95
  • [9] EXPONENTIAL OBSERVERS FOR NONLINEAR DYNAMIC-SYSTEMS
    KOU, SR
    ELLIOTT, DL
    TARN, TJ
    [J]. INFORMATION AND CONTROL, 1975, 29 (03): : 204 - 216
  • [10] Lakshmikantham V., 1969, DIFFERENTIAL INTERGR