When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k?

被引:0
作者
Graham, I. G. [1 ]
Loehndorf, M. [2 ]
Melenk, J. M. [3 ]
Spence, E. A. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Kapsch TrafficCom, A-1120 Vienna, Austria
[3] Tech Univ Wien, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
Helmholtz equation; High frequency; Boundary integral equation; Boundary element method; Pollution effect; FREQUENCY ACOUSTIC SCATTERING; INTEGRAL-OPERATORS; WAVE-NUMBER; CONVEX POLYGONS; ELEMENT METHOD; INDEFINITE; APPROXIMATION;
D O I
10.1007/s10543-014-0501-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider solving the sound-soft scattering problem for the Helmholtz equation with the -version of the boundary element method using the standard second-kind combined-field integral equations. We obtain sufficient conditions for the relative best approximation error to be bounded independently of . For certain geometries, these rigorously justify the commonly-held belief that a fixed number of degrees of freedom per wavelength is sufficient to keep the relative best approximation error bounded independently of . We then obtain sufficient conditions for the Galerkin method to be quasi-optimal, with the constant of quasi-optimality independent of . Numerical experiments indicate that, while these conditions for quasi-optimality are sufficient, they are not necessary for many geometries.
引用
收藏
页码:171 / 214
页数:44
相关论文
共 46 条
[41]  
SCHATZ AH, 1974, MATH COMPUT, V28, P959, DOI 10.1090/S0025-5718-1974-0373326-0
[42]  
Spence E.A., 2014, SIAM J MATH IN PRESS
[43]  
Spence E.A., 2014, COMMUN PURE IN PRESS
[44]  
Spence E.A, BOUNDING ACOUSTIC LA, DOI [10.1007/s10543-014-0506-0, DOI 10.1007/S10543-014-0506-0]
[45]   A New Frequency-Uniform Coercive Boundary Integral Equation for Acoustic Scattering [J].
Spence, Euan A. ;
Chandler-Wilde, Simon N. ;
Graham, Ivan G. ;
Smyshlyaev, Valery P. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) :1384-1415
[46]  
Wu H., 2014, IMA J NUMER IN PRESS