When is the error in the h-BEM for solving the Helmholtz equation bounded independently of k?

被引:0
作者
Graham, I. G. [1 ]
Loehndorf, M. [2 ]
Melenk, J. M. [3 ]
Spence, E. A. [1 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Kapsch TrafficCom, A-1120 Vienna, Austria
[3] Tech Univ Wien, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
Helmholtz equation; High frequency; Boundary integral equation; Boundary element method; Pollution effect; FREQUENCY ACOUSTIC SCATTERING; INTEGRAL-OPERATORS; WAVE-NUMBER; CONVEX POLYGONS; ELEMENT METHOD; INDEFINITE; APPROXIMATION;
D O I
10.1007/s10543-014-0501-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider solving the sound-soft scattering problem for the Helmholtz equation with the -version of the boundary element method using the standard second-kind combined-field integral equations. We obtain sufficient conditions for the relative best approximation error to be bounded independently of . For certain geometries, these rigorously justify the commonly-held belief that a fixed number of degrees of freedom per wavelength is sufficient to keep the relative best approximation error bounded independently of . We then obtain sufficient conditions for the Galerkin method to be quasi-optimal, with the constant of quasi-optimality independent of . Numerical experiments indicate that, while these conditions for quasi-optimality are sufficient, they are not necessary for many geometries.
引用
收藏
页码:171 / 214
页数:44
相关论文
共 46 条
[1]  
[Anonymous], 1997, CAMBRIDGE MONOGRAPHS
[2]  
[Anonymous], 1967, Les methodes directes en theorie des equations elliptiques
[3]  
[Anonymous], 1965, HDB MATH FUNCTIONS F
[4]  
[Anonymous], INTEGRAL EQUATION ME
[5]  
Anselone P. M., 1971, Collectively Compact Operator Approximation Theory and Applications to Integral Equations
[6]   A refined Galerkin error and stability analysis for highly indefinite variational problems [J].
Banjai, L. ;
Sauter, S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (01) :37-53
[7]   ON ACCURACY CONDITIONS FOR THE NUMERICAL COMPUTATION OF WAVES [J].
BAYLISS, A ;
GOLDSTEIN, CI ;
TURKEL, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 59 (03) :396-404
[8]   NUMERICAL ESTIMATION OF COERCIVITY CONSTANTS FOR BOUNDARY INTEGRAL OPERATORS IN ACOUSTIC SCATTERING [J].
Betcke, T. ;
Spence, E. A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) :1572-1601
[9]   Condition Number Estimates for Combined Potential Integral Operators in Acoustics and Their Boundary Element Discretisation [J].
Betcke, T. ;
Chandler-Wilde, S. N. ;
Graham, I. G. ;
Langdon, S. ;
Lindner, M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (01) :31-69
[10]   Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions [J].
Boubendir, Yassine ;
Turc, Catalin .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) :1176-1225