Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer

被引:40
作者
Barletta, A. [1 ]
Rees, D. A. S. [2 ]
机构
[1] Univ Bologna, Dept Ind Engn, Alma Mater Studiorum, I-40136 Bologna, Italy
[2] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon, England
关键词
Porous medium; Darcy's law; Linear stability; Inclined layer; Local thermal non-equilibrium; DARCY-BRINKMAN CONVECTION; UNIFORM HEAT-SOURCE; BOUNDARY-CONDITIONS; BENARD CONVECTION; ONSET; MODEL; MEDIA; CHANNEL; FLUID; CONDUCTION;
D O I
10.1016/j.ijheatmasstransfer.2014.12.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
The two-temperature model of local thermal non-equilibrium (LTNE) is employed to investigate the onset of secondary convective flow in a fluid-saturated porous layer inclined to the horizontal and heated from below. The layer is assumed to be bounded by impermeable plane parallel walls with uniform and unequal temperatures. The linear instability of the stationary pure-conduction single-cell basic flow is studied by employing a normal mode decomposition of the disturbances. A Squire-like transformation is adopted to map all the oblique roll modes onto equivalent transverse roll modes. It is shown that the longitudinal rolls are the most unstable modes at the onset of the instability. The neutral stability condition for the longitudinal modes corresponds to that for a horizontal layer, by scaling the Darcy-Rayleigh number with cosine of the inclination angle to the horizontal. This scaling law, coincident with that well-known for the local thermal equilibrium (LTE) regime, implies a monotonic increment in the stability of the basic flow as the inclination to the horizontal increases. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 33 条
[1]   Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions [J].
Alazmi, B ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (15) :3071-3087
[2]   EFFECTS OF BOUNDARY-CONDITIONS ON NON-DARCIAN HEAT-TRANSFER THROUGH POROUS-MEDIA AND EXPERIMENTAL COMPARISONS [J].
AMIRI, A ;
VAFAI, K ;
KUZAY, TM .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1995, 27 (06) :651-664
[3]   Onset of Darcy-Benard convection using a thermal non-equilibrium model [J].
Banu, N ;
Rees, DAS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (11) :2221-2228
[4]   Local thermal non-equilibrium effects in the Darcy-Benard instability with isoflux boundary conditions [J].
Barletta, A. ;
Rees, D. A. S. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (1-3) :384-394
[5]   Thermoconvective instabilities in an inclined porous channel heated from below [J].
Barletta, A. ;
Storesletten, L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (13-14) :2724-2733
[6]  
Barletta A, 2011, ADV STRUCT MAT, V2, P381, DOI 10.1007/8611_2010_8
[7]  
Bodes S.A., 1973, J FLUID MECH, V57, P63
[8]   SOLUTIONS AND STABILITY-CRITERIA OF NATURAL CONVECTIVE FLOW IN AN INCLINED POROUS LAYER [J].
CALTAGIRONE, JP ;
BORIES, S .
JOURNAL OF FLUID MECHANICS, 1985, 155 (JUN) :267-287
[9]   MODELIZATION OF NATURAL-CONVECTION INSIDE A HORIZONTAL POROUS LAYER USING A SOLID-FLUID TRANSFER-COEFFICIENT [J].
COMBARNOUS, M ;
BORIES, S .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1974, 17 (04) :505-515
[10]   Onset of stationary and oscillatory convection in a tilted porous cavity saturated with a binary fluid: Linear stability analysis [J].
Karimi-Fard, M ;
Charrier-Mojtabi, MC ;
Mojtabi, A .
PHYSICS OF FLUIDS, 1999, 11 (06) :1346-1358