Non-Differentiable Mechanical Model and Its Implications

被引:10
作者
Agop, M. [1 ,2 ,3 ]
Niculescu, O. [4 ]
Timofte, A. [4 ]
Bibire, L. [5 ]
Ghenadi, A. S. [5 ]
Nicuta, A. [3 ]
Nejneru, C. [3 ]
Munceleanu, G. V. [4 ]
机构
[1] Univ Sci & Technol Lille, Ctr Etud & Rech Lasers & Applicat, FR CNRS 2416, F-59655 Villeneuve Dascq, France
[2] Univ Athens, Dept Phys, GR-15771 Athens, Greece
[3] Gh Asachi Tech Univ Iasi, Iasi 700050, Romania
[4] Alexandru Ioan Cuza Univ, Fac Phys, Iasi 700506, Romania
[5] Univ Bacau, Dept Engn, Bacau 600115, Romania
关键词
Fractal fluids; Complex speed field; Navier-Stokes-type equation; Schrodinger-type equation; EPSILON((INFINITY)) SPACE-TIME; E-INFINITY; HYDRODYNAMIC MODEL;
D O I
10.1007/s10773-010-0330-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering that the motions of the particles take place on fractals, a non-differentiable mechanical model is built. Only if the spatial coordinates are fractal functions, the Galilean version of our model is obtained: the geodesics satisfy a Navier-Stokes-type of equation with an imaginary viscosity coefficient for a complex speed field or respectively, a Schrodinger-type of equation or hydrodynamic equations, in the case of irrotational movements. Moreover, in this approach, the analysis of the fractal fluid dynamics generates conductive properties in the case of movements synchronization both on differentiable and fractal scales, and convective properties in the absence of synchronization ( e. g. laser ablation plasma is analyzed). On the other hand, if both the spatial and temporal coordinates are fractal functions, it results that, the geodesics satisfy a Klein-Gordon-type of equation on a Minkowskian manifold.
引用
收藏
页码:1489 / 1506
页数:18
相关论文
共 35 条
  • [1] On the vacuum status in Weyl-Dirac theory
    Agop, M.
    Nica, P.
    Girtu, Manuela
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (01) : 35 - 55
  • [2] El!Naschie's ε(∞) space-time, hydrodynamic model of scale relativity theory and some applications
    Agop, M.
    Nica, P.
    Ioannou, P. D.
    Malandraki, Olga
    Gavanas-Pahomi, I.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1704 - 1723
  • [3] [Anonymous], FINITE ELEMENT METHO
  • [4] [Anonymous], INTRO NANOMECHANICS
  • [5] [Anonymous], 1960, Theorie Relativiste des Fluides a Spin
  • [6] Quantum derivatives and the Schrodinger equation
    Ben Adda, F
    Cresson, J
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1323 - 1334
  • [7] BUZEA CG, 2010, NONLINEAR SCI LETT A, V1, P109
  • [8] Quantum-classical transition in scale relativity
    Célérier, MN
    Nottale, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (03): : 931 - 955
  • [9] Non-differentiable variational principles
    Cresson, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) : 48 - 64
  • [10] Anomalies free E-infinity from von Neumann's continuous geometry
    El Naschie, M. S.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 38 (05) : 1318 - 1322