Heterogeneous, Three-Dimensional Texturing of Graphene

被引:89
作者
Wang, Michael Cai [1 ]
Chun, SungGyu [1 ]
Han, Ryan Steven [1 ]
Ashraf, Ali [1 ]
Kang, Pilgyu [1 ]
Nam, SungWoo [1 ,2 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
关键词
Graphene; graphite; shape-memory polymer; shrinkage; crumples; ENHANCED CHEMICAL-REACTIVITY; LARGE-AREA; STRAIN; FILMS; PERFORMANCE; TRANSISTORS; TRANSPORT; RIPPLES; ENERGY;
D O I
10.1021/nl504612y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a single-step strategy to achieve heterogeneous, three-dimensional (3D) texturing of graphene and,graphite by using thermally activated shape-memory polymer substrate. Uniform arrays of graphene crumples can be Created on the centimeter scale:by controlling simple thermal processing parameters :,without compromising the electrical properties, of graphene. In addition, we show the,capability to selectively pattern. crumples from otherwise flat graphene and graphene/graphite in a localized manner, which has not been previously achievable using other methods. Finally, we demonstrate 3D crumpled graphene field-effect transistor arrays in a solution-gated configuration. The presented approach has the capability to conform onto arbitrary 3D surfaces, a necessary prerequisite for adaptive electronics, and will enable facile large-scale topography engineering of not only graphene but also other thin-film and 2D materials in the future.
引用
收藏
页码:1829 / 1835
页数:7
相关论文
共 52 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Assembly and Densification of Nanowire Arrays via Shrinkage [J].
Bang, Jaehoon ;
Choi, Jonghyun ;
Xia, Fan ;
Kwon, Sun Sang ;
Ashraf, Ali ;
Park, Won Il ;
Nam, SungWoo .
NANO LETTERS, 2014, 14 (06) :3304-3308
[3]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[4]   Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain [J].
Bissett, Mark A. ;
Konabe, Satoru ;
Okada, Susumu ;
Tsuji, Masaharu ;
Ago, Hiroki .
ACS NANO, 2013, 7 (11) :10335-10343
[5]   Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene [J].
Bissett, Mark A. ;
Tsuji, Masaharu ;
Ago, Hiroki .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (06) :3152-3159
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[8]   Herringbone buckling patterns of compressed thin films on compliant substrates [J].
Chen, X ;
Hutchinson, JW .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2004, 71 (05) :597-603
[9]   The potential of naturally occurring lasing for biological and chemical sensors [J].
Choi S.H. ;
Kim Y.L. .
Biomedical Engineering Letters, 2014, 4 (03) :201-212
[10]   Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording [J].
Cohen-Karni, Tzahi ;
Qing, Quan ;
Li, Qiang ;
Fang, Ying ;
Lieber, Charles M. .
NANO LETTERS, 2010, 10 (03) :1098-1102