Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method

被引:2
作者
Verschaeve, Joris C. G. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 369卷 / 1944期
关键词
lattice Boltzmann method; boundary condition; numerical accuracy; numerical stability; CLOSURE SCHEME; HYDRODYNAMICS;
D O I
10.1098/rsta.2011.0045
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.
引用
收藏
页码:2184 / 2192
页数:9
相关论文
共 12 条
  • [1] A mass conserving boundary condition for lattice Boltzmann models
    Chopard, B
    Dupuis, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (1-2): : 103 - 107
  • [2] Currie I.G., 1974, Fundamental Mechanics of Fluids
  • [3] Enhanced closure scheme for lattice Boltzmann equation hydrodynamics
    Halliday, I
    Hammond, LA
    Care, CM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12): : L157 - L166
  • [4] HANEL D, 2004, EINFUHRUNG KINETISCH
  • [5] Enhanced, mass-conserving closure scheme for lattice Boltzmann equation hydrodynamics
    Hollis, A.
    Halliday, I.
    Care, C. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33): : 10589 - 10601
  • [6] NON-SLIP BOUNDARY-CONDITION FOR LATTICE BOLTZMANN SIMULATIONS
    INAMURO, T
    YOSHINO, M
    OGINO, F
    [J]. PHYSICS OF FLUIDS, 1995, 7 (12) : 2928 - 2930
  • [7] Straight velocity boundaries in the lattice Boltzmann method
    Latt, Jonas
    Chopard, Bastien
    Malaspinas, Orestis
    Deville, Michel
    Michler, Andreas
    [J]. PHYSICAL REVIEW E, 2008, 77 (05):
  • [8] INITIAL AND BOUNDARY-CONDITIONS FOR THE LATTICE BOLTZMANN METHOD
    SKORDOS, PA
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4823 - 4842
  • [9] SUCCI S, 2001, L BOLTZMANN EQUATION
  • [10] Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: Ways to improve accuracy and stability
    Verschaeve, Joris C. G.
    [J]. PHYSICAL REVIEW E, 2009, 80 (03):