Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration

被引:60
作者
Wang, Zixu [1 ,2 ,3 ,4 ,5 ]
Wang, Han [1 ,2 ,3 ,4 ,5 ]
Xiong, Junjie [1 ,2 ,3 ,4 ,5 ]
Li, Jiahao [6 ]
Miao, Xiaomin [6 ]
Lan, Xingzi [6 ]
Liu, Xujie [6 ]
Wang, Wenlong [7 ]
Cai, Nian [8 ]
Tang, Yadong [6 ]
机构
[1] State Key Lab Precis Elect Mfg Technol & Equipmen, Guangzhou 510006, Peoples R China
[2] Guangdong Prov Key Lab Micronano Mfg Technol & Eq, Guangzhou 510006, Peoples R China
[3] Ultraprecis Mfg Equipment Guangdong Hong Kong Joi, Guangzhou 510006, Peoples R China
[4] Minist Educ, Key Lab Precis Elect Mfg Equipment & Technol, Guangzhou 510006, Peoples R China
[5] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R China
[6] Guangdong Univ Technol, Sch Biomed & Pharmaceut Sci, Guangzhou 510006, Peoples R China
[7] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou 510006, Peoples R China
[8] Guangdong Univ Technol, Sch Informat Sci, Guangzhou 510006, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2021年 / 128卷 / 128期
基金
中国国家自然科学基金;
关键词
Composite scaffold; Melt electrospinning writing; Solution electrospinning; Bone regeneration; Poly (epsilon-caprolactone) (PCL); Gelatin; OF-THE-ART; NANOFIBROUS SCAFFOLDS; CELL-ADHESION; REPAIR; MODEL;
D O I
10.1016/j.msec.2021.112287
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
As an emerging 3D printing technique, melt electrospinning writing (MEW) has been used to fabricate scaffolds with controllable structure and good mechanical strength for bone regeneration. However, how to further improve MEW scaffolds with nanoscale extracellular matrix (ECM) mimic structure and bioactivity is still challenging. In this study, we proposed a simple composite process by combining MEW and solution electrospinning (SE) to fabricate a micro/nano hierarchical scaffold for bone tissue engineering. The morphological results confirmed the hierarchical structure with both well-defined MEW microfibrous grid structure and SE random nanofiber morphology. The addition of gelatin nanofibers turned the scaffolds to be hydrophilic, and led to a slight enhancement of mechanical strength. Compared with PCL MEW scaffolds, higher cell adhesion efficiency, improved cell proliferation and higher osteoinductive ability were achieved for the MEW/SE composite scaffolds. Finally, multilayer composite scaffolds were fabricated by alternately stacking of MEW layer and SE layer and used to assess the effect on cell ingrowth in the scaffolds. The results showed that gelatin nanofibers did not inhibit cell penetration, but promoted the three-dimensional growth of bone cells. Thus, the strategy of the combined use of MEW and SE is a potential method to fabricate micro/nano hierarchical scaffolds to improve bone regeneration.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases [J].
Alexander, Peter G. ;
Gottardi, Riccardo ;
Lin, Hang ;
Lozito, Thomas P. ;
Tuan, Rocky S. .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (09) :1080-1095
[2]   Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair [J].
Bai, Jianfu ;
Wang, Han ;
Gao, Wei ;
Liang, Feng ;
Wang, Zixu ;
Zhou, Ying ;
Lan, Xingzi ;
Chen, Xun ;
Cai, Nian ;
Huang, Weimin ;
Tang, Yadong .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 576
[3]   Permanent Hydrophilization and Generic Bioactivation of Melt Electrowritten Scaffolds [J].
Bertlein, Sarah ;
Hochleitner, Gernot ;
Schmitz, Michael ;
Tessmar, Joerg ;
Raghunath, Michael ;
Dalton, Paul D. ;
Groll, Juergen .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (07)
[4]   Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering [J].
Carlstrom, Ingeborg Elisabeth ;
Rashad, Ahmad ;
Campodoni, Elisabetta ;
Sandri, Monica ;
Syverud, Kristin ;
Bolstad, Anne Isine ;
Mustafa, Kamal .
MATERIALS LETTERS, 2020, 264 (264)
[5]   Fabrication of Scaffolds for Bone-Tissue Regeneration [J].
Chocholata, Petra ;
Kulda, Vlastimil ;
Babuska, Vaclav .
MATERIALS, 2019, 12 (04)
[6]   Biopolymeric nanocomposite scaffolds for bone tissue engineering applications - A review [J].
Christy, P. Narmatha ;
Basha, S. Khaleel ;
Kumari, V. Sugantha ;
Bashir, A. K. H. ;
Maaza, M. ;
Kaviyarasu, K. ;
Arasu, Mariadhas Valan ;
Al-Dhabi, Naif Abdullah ;
Ignacimuthu, Savarimuthu .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 55
[7]  
den Braber ET, 1998, J BIOMED MATER RES, V40, P291, DOI 10.1002/(SICI)1097-4636(199805)40:2<291::AID-JBM14>3.0.CO
[8]  
2-P
[9]   Electrospun polymer biomaterials [J].
Ding, Jianxun ;
Zhang, Jin ;
Li, Jiannan ;
Li, Di ;
Xiao, Chunsheng ;
Xiao, Haihua ;
Yang, Huanghao ;
Zhuang, Xiuli ;
Chen, Xuesi .
PROGRESS IN POLYMER SCIENCE, 2019, 90 :1-34
[10]   Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy [J].
Ding, Yaping ;
Li, Wei ;
Zhang, Feng ;
Liu, Zehua ;
Ezazi, Nazanin Zanjanizadeh ;
Liu, Dongfei ;
Santos, Helder A. .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)