High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

被引:18
|
作者
Nazari, Farshid [1 ]
Mohammadian, Abdolmajid [1 ]
Charron, Martin [2 ]
机构
[1] Univ Ottawa, Dept Civil Engn, Ottawa, ON K1N 6N5, Canada
[2] Environm Canada, Atmospher Numer Weather Predict Res Div, Haliburton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Low-dissipation low-dispersion; Optimal schemes; High-order accurate; Nonlinear advection; Computational acoustics; Diagonally-implicit; Time integration; Runge-Kutta; ATMOSPHERIC BOUNDARY-LAYER; FINITE-DIFFERENCE SCHEMES; COMPUTATIONAL ACOUSTICS;
D O I
10.1016/j.jcp.2015.01.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-order low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes are analyzed and introduced, based on the optimization of amplification and phase errors for wave propagation. Various optimized schemes can be obtained. The new scheme shows negligible dissipation. It is illustrated mathematically and numerically that the new scheme preserves fourth-order accuracy, while the recently developed diagonally implicit Runge-Kutta scheme does not. The numerical applications contain the advection equation with and without a stiff nonlinear source term and an oscillatory test. The new scheme is A-stable as desired for the solution of stiff problems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 50 条
  • [31] Dispersion and dissipation error in high-order runge-kutta discontinuous galerkin discretisations of the Maxwell equations
    Sarmany, D.
    Botchev, M. A.
    van der Vegt, J. J. W.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (01) : 47 - 74
  • [32] High-order Pade and singly diagonally Runge-Kutta schemes for linear ODEs, application to wave propagation problems
    Barucq, Helene
    Durufle, Marc
    N'Diaye, Mamadou
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (02) : 760 - 798
  • [33] High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics
    Fu, Lin
    Tang, Qi
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 692 - 716
  • [34] HIGH-ORDER IMPLICIT RUNGE-KUTTA METHODS FOR UNSTEADY INCOMPRESSIBLE FLOWS
    Montlaur, A.
    Fernandez-Mendez, S.
    Huerta, A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2011, 27 (01): : 77 - 91
  • [35] High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics
    Lin Fu
    Qi Tang
    Journal of Scientific Computing, 2019, 80 : 692 - 716
  • [36] A SINGLY DIAGONALLY IMPLICIT RUNGE-KUTTA-NYSTROM METHOD WITH DISPERSION OF HIGH ORDER
    Senu, N.
    Suleiman, M.
    Ismail, F.
    Othman, M.
    IAENG TRANSACTIONS ON ENGINEERING TECHNOLOGIES, VOL 7, 2012, : 116 - 129
  • [37] Linearly Implicit High-Order Exponential Integrators Conservative Runge-Kutta Schemes for the Fractional Schrodinger Equation
    Fu, Yayun
    Zheng, Qianqian
    Zhao, Yanmin
    Xu, Zhuangzhi
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [38] LOW-STORAGE RUNGE-KUTTA SCHEMES
    WILLIAMSON, JH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (01) : 48 - 56
  • [39] DESIRE: diagonally extended singly implicit Runge-Kutta effective order methods
    Butcher, JC
    Diamantakis, MT
    NUMERICAL ALGORITHMS, 1998, 17 (1-2) : 121 - 145
  • [40] ON THE DESIGN OF A VARIABLE ORDER, VARIABLE STEP DIAGONALLY IMPLICIT RUNGE-KUTTA ALGORITHM
    CASH, JR
    LIEM, CB
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1980, 26 (01): : 87 - 91