The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination

被引:32
作者
Abbott, D. Wade
Gilbert, Harry J.
Boraston, Alisdair B. [1 ]
机构
[1] Univ Victoria, Dept Biochem & Microbiol, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ERWINIA-CHRYSANTHEMI; 3937; PECTATE LYASE; YERSINIA-PESTIS; BACTERIAL SYMBIONT; MOLECULAR-GRAPHICS; STRUCTURAL BASIS; CALCIUM; PECTIN; DEGRADATION; PROTEINS;
D O I
10.1074/jbc.M110.153981
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oligogalacturonate lyases (OGLs; now also classified as pectate lyase family 22) are cytoplasmic enzymes found in pectinolytic members of Enterobacteriaceae, such as the enteropathogen Yersinia enterocolitica. OGLs utilize a beta-elimination mechanism to preferentially catalyze the conversion of saturated and unsaturated digalacturonate into monogalacturonate and the 4,5-unsaturated monogalacturonate-like molecule, 5-keto-4-deoxyuronate. To provide mechanistic insights into the specificity of this enzyme activity, we have characterized the OGL from Y. enterocolitica, YeOGL, on oligogalacturonides and determined its three-dimensional x-ray structure to 1.65 angstrom. The model contains a Mn2+ atom in the active site, which is coordinated by three histidines, one glutamine, and an acetate ion. The acetate mimics the binding of the uronate group of galactourono-configured substrates. These findings, in combination with enzyme kinetics and metal supplementation assays, provide a framework for modeling the active site architecture of OGL. This enzyme appears to contain a histidine for the abstraction of the alpha-proton in the -1 subsite, a residue that is highly conserved throughout the OGL family and represents a unique catalytic base among pectic active lyases. In addition, we present a hypothesis for an emerging relationship observed between the cellular distribution of pectate lyase folding and the distinct metal coordination chemistries of pectate lyases.
引用
收藏
页码:39029 / 39038
页数:10
相关论文
共 53 条
[1]   Structural biology of pectin degradation by Enterobacteriaceae [J].
Abbott, D. Wade ;
Boraston, Alisdair B. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2008, 72 (02) :301-316
[2]   A family 2 pectate lyase displays a rare fold and transition metal-assisted β-elimination [J].
Abbott, D. Wade ;
Boraston, Alisdair B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (48) :35328-35336
[3]   Long-term persistence of virulent Yersinia pestis in soil [J].
Ayyadurai, Saravanan ;
Houhamdi, Linda ;
Lepidi, Hubert ;
Nappez, Claude ;
Raoult, Didier ;
Drancourt, Michel .
MICROBIOLOGY-SGM, 2008, 154 :2865-2871
[4]   Host-bacterial mutualism in the human intestine [J].
Bäckhed, F ;
Ley, RE ;
Sonnenburg, JL ;
Peterson, DA ;
Gordon, JI .
SCIENCE, 2005, 307 (5717) :1915-1920
[5]   Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A [J].
Boraston, AB ;
Creagh, AL ;
Alam, MM ;
Kormos, JM ;
Tomme, P ;
Haynes, CA ;
Warren, RAJ ;
Kilburn, DG .
BIOCHEMISTRY, 2001, 40 (21) :6240-6247
[6]   The structure, function, and biosynthesis of plant cell wall pectic polysaccharides [J].
Caffall, Kerry Hosmer ;
Mohnen, Debra .
CARBOHYDRATE RESEARCH, 2009, 344 (14) :1879-1900
[7]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[8]   Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases [J].
Charnock, SJ ;
Brown, IE ;
Turkenburg, JP ;
Black, GW ;
Davies, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12067-12072
[9]   STRUCTURES AND MECHANISMS OF GLYCOSYL HYDROLASES [J].
DAVIES, G ;
HENRISSAT, B .
STRUCTURE, 1995, 3 (09) :853-859
[10]   The importance of the twin-arginine translocation pathway for bacterial virulence [J].
De Buck, Emmy ;
Lammertyn, Elke ;
Anne, Jozef .
TRENDS IN MICROBIOLOGY, 2008, 16 (09) :442-453