Homotopy Perturbation Method for the Fractal Toda Oscillator

被引:126
作者
He, Ji-Huan [1 ,2 ,3 ]
El-Dib, Yusry O. [4 ]
Mady, Amal A. [4 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, 199 Ren Ai Rd, Suzhou 215123, Peoples R China
[4] Ain Shams Univ, Fac Educ, Dept Math, Cairo 11517, Egypt
关键词
fractal Hamilton principle; fractal Weierstrass theorem; strong minimum condition; Toda oscillator homotopy perturbation method; frequency-amplitude relationship; RANK UPGRADING TECHNIQUE; VARIATIONAL PRINCIPLE;
D O I
10.3390/fractalfract5030093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fractal Toda oscillator with an exponentially nonlinear term is extremely difficult to solve; Elias-Zuniga et al. (2020) suggested the equivalent power-form method. In this paper, first, the fractal variational theory is used to show the basic property of the fractal oscillator, and a new form of the Toda oscillator is obtained free of the exponential nonlinear term, which is similar to the form of the Jerk oscillator. The homotopy perturbation method is used to solve the fractal Toda oscillator, and the analytical solution is examined using the numerical solution which shows excellent agreement. Furthermore, the effect of the order of the fractal derivative on the vibration property is elucidated graphically.
引用
收藏
页数:8
相关论文
共 48 条
[1]   VARIATIONAL PRINCIPLE FOR (2+1)-DIMENSIONAL BROER-KAUP EQUATIONS WITH FRACTAL DERIVATIVES [J].
Cao, Xiao-Qun ;
Hou, Shi-Cheng ;
Guo, Ya-Nan ;
Zhang, Cheng-Zhuo ;
Peng, Ke-Cheng .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
[2]   Lasers as Toda oscillators: An experimental confirmation [J].
Cialdi, Simone ;
Castelli, Fabrizio ;
Prati, Franco .
OPTICS COMMUNICATIONS, 2013, 287 :176-179
[3]   The Rank Upgrading Technique for a Harmonic Restoring Force of Nonlinear Oscillators [J].
El-Dib, Yusry O. ;
Matoog, Rajaa T. .
JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02) :782-789
[4]   Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation [J].
El-Dib, Yusry O. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 :555-565
[5]   EFFECT OF FRACTIONAL DERIVATIVE PROPERTIES ON THE PERIODIC SOLUTION OF THE NONLINEAR OSCILLATIONS [J].
El-Dib, Yusry O. ;
Elgazery, Nasser S. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
[6]   ANALYTICAL SOLUTION OF THE FRACTAL CUBIC-QUINTIC DUFFING EQUATION [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera-Trejo, Daniel .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (04)
[7]   A fractal model for current generation in porous electrodes [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera-Trejo, Daniel .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 880
[8]   EQUIVALENT POWER-FORM REPRESENTATION OF THE FRACTAL TODA OSCILLATOR [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera Trejo, Daniel .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
[9]   He's frequency-amplitude formulation for nonlinear oscillators using Jacobi elliptic functions [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera Trejo, Daniel .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) :1216-1223
[10]   He's frequency formula to fractal undamped Duffing equation [J].
Feng, Guang-Qing .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2021, 40 (04) :1671-1676