Sofic entropy and amenable groups

被引:44
作者
Bowen, Lewis [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
MEASURE PRESERVING TRANSFORMATIONS;
D O I
10.1017/S0143385711000253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In previous work, the author introduced a measure-conjugacy invariant for sofic group actions called sofic entropy. Here, it is proven that the sofic entropy of an amenable group action equals its classical entropy. The proof uses a new measure-conjugacy invariant called upper-sofic entropy and a theorem of Rudolph and Weiss for the entropy of orbit-equivalent actions relative to the orbit change sigma-algebra.
引用
收藏
页码:427 / 466
页数:40
相关论文
共 20 条
[1]  
Bowen L., ERGOD TH DY IN PRESS
[2]   MEASURE CONJUGACY INVARIANTS FOR ACTIONS OF COUNTABLE SOFIC GROUPS [J].
Bowen, Lewis .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) :217-245
[3]  
Connes A., 1981, Ergodic Theory and Dynamical Systems, V1, P431, DOI [10.1017/S014338570000136X, DOI 10.1017/S014338570000136X]
[4]   ON GROUPS OF MEASURE PRESERVING TRANSFORMATIONS .2 [J].
DYE, HA .
AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (04) :551-&
[5]   ON GROUPS OF MEASURE PRESERVING TRANSFORMATIONS .1. [J].
DYE, HA .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (01) :119-159
[6]  
Elek G., ARXIV10103424
[7]  
GLASNER E, 2003, Mathematical Surveys and Monographs, V101
[8]  
Gromov M., 1999, J. Eur. Math. Soc. (JEMS), V1, P109, DOI [10.1007/PL00011162, DOI 10.1007/PL00011162]
[9]  
Kerr D., ARXIV10081429
[10]  
Kerr D., ARXIV10050399