Jacobi-Sobolev Orthogonal Polynomials: Asymptotics for N-Coherence of Measures

被引:1
|
作者
Fejzullahu, Bujar Xh. [2 ]
Marcellan, Francisco [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Escuela Politecn Super, Leganes 28911, Spain
[2] Univ Prishtina, Fac Math & Sci, Prishtina 10000, Kosovo, Serbia
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2011年
关键词
NONCOHERENT PAIRS; ZEROS; CONVERGENCE; RESPECT;
D O I
10.1155/2011/294134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let us introduce the Sobolev-type inner product (f, g) = (f, g)(1) + lambda(f ', g')(2), where lambda > 0 and (f, g)(1) = integral(1)(-1)f(x)g(x)(1 - x)(alpha) (1 + x)(beta) (1 + x)(beta)dx, (f, g)(2) = integral(1)(-1) f(x)g(x)((1 - x)(a+1) (1 - x)(alpha+1) (1 - x)(beta+1))/(Pi(M)(k=1)vertical bar x -xi k vertical bar(Nk+1))dx + Sigma(M)(k=1) Sigma(Nk)(i=0) M(k,i)f((i)) (xi(k))(g)((i))(xi(k)), with alpha, beta > -1, vertical bar xi(k)vertical bar > 1, and M-k,M-i > 0, for all k, i. A Mehler-Heine-type formula and the inner strong asymptotics on (-1, 1) as well as some estimates for the polynomials orthogonal with respect to the above Sobolev inner product are obtained. Necessary conditions for the norm convergence of Fourier expansions in terms of such Sobolev orthogonal polynomials are given.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Jacobi-Sobolev Orthogonal Polynomials: Asymptotics for N-Coherence of Measures
    Bujar Xh Fejzullahu
    Francisco Marcellán
    Journal of Inequalities and Applications, 2011
  • [2] Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
    de Andrade, Eliana X. L.
    Bracciali, Cleonice F.
    Castano-Garcia, Laura
    Moreno-Balcazar, Juan J.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (11) : 1945 - 1963
  • [3] Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
    Fejzullahu, B. Xh.
    Marcellan, F.
    Moreno-Balcazar, J. J.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 78 - 93
  • [4] On Fourier series of Jacobi-Sobolev orthogonal polynomials
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) : 673 - 699
  • [5] Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials
    Moreno-Balcázar, JJ
    Martínez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 393 - 401
  • [6] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [7] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [8] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    MATHEMATICS, 2020, 8 (02)
  • [9] Zeros of Jacobi-Sobolev orthogonal polynomials following non-coherent pair of measures
    de Andrade, Eliana X. L.
    Bracciali, Cleonice F.
    de Mello, Mirela V.
    Perez, Teresa E.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (03): : 423 - 445
  • [10] Zeros of Jacobi-Sobolev orthogonal polynomials following non-coherent pair of measures
    de Andrade E.X.L.
    Bracciali C.F.
    de Mello M.V.
    Pérez T.E.
    Computational and Applied Mathematics, 2010, 29 (03) : 423 - 445