Higher order fractional variational optimal control problems with delayed arguments

被引:35
作者
Jarad, Fahd [1 ]
Abdeljawad , Thabet [1 ]
Baleanu, Dumitru [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
关键词
Fractional derivatives; Delay; DERIVATIVES; FORMULATION; SCHEME;
D O I
10.1016/j.amc.2012.02.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with higher order Caputo fractional variational problems in the presence of delay in the state variables and their integer higher order derivatives. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:9234 / 9240
页数:7
相关论文
共 15 条
[1]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[2]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]   Fractional variational principles with delay [J].
Baleanu, Dumitru ;
Abdeljawad, Thabet ;
Jarad, Fahd .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
[5]   Continued fraction expansion approaches to discretizing fractional order derivatives - an expository review [J].
Chen, YQ ;
Vinagre, BM ;
Podlubny, I .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :155-170
[6]   Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J].
Heymans, Nicole ;
Podlubny, Igor .
RHEOLOGICA ACTA, 2006, 45 (05) :765-771
[7]   FRACTIONAL VARIATIONAL PRINCIPLES WITH DELAY WITHIN CAPUTO DERIVATIVES [J].
Jarad, Fahd ;
Abdeljawad , Thabet ;
Baleanu, Dumitru .
REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (01) :17-28
[8]   Fractional control of heat diffusion systems [J].
Jesus, Isabel S. ;
Machado, J. A. Tenreiro .
NONLINEAR DYNAMICS, 2008, 54 (03) :263-282
[9]   Introduction to fractional integrability and differentiability [J].
Li, C. P. ;
Zhao, Z. G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :5-26
[10]  
Magin R.L., 2006, Fractional calculus in bioengineering