Strategies for Functional Interrogation of Big Cancer Data Using Drosophila Cancer Models

被引:5
作者
Bangi, Erdem [1 ]
机构
[1] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA
基金
美国国家卫生研究院;
关键词
cancer; Drosophila; big data; cancer genomics; DNA METHYLATION; CELLS; PLATFORM; SYSTEM; GENES; EXPRESSION; DIAGNOSIS; LIBRARY; RNA;
D O I
10.3390/ijms21113754
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rapid development of high throughput genome analysis technologies accompanied by significant reduction in costs has led to the accumulation of an incredible amount of data during the last decade. The emergence of big data has had a particularly significant impact in biomedical research by providing unprecedented, systems-level access to many disease states including cancer, and has created promising opportunities as well as new challenges. Arguably, the most significant challenge cancer research currently faces is finding effective ways to use big data to improve our understanding of molecular mechanisms underlying tumorigenesis and developing effective new therapies. Functional exploration of these datasets and testing predictions from computational approaches using experimental models to interrogate their biological relevance is a key step towards achieving this goal. Given the daunting scale and complexity of the big data available, experimental systems like Drosophila that allow large-scale functional studies and complex genetic manipulations in a rapid, cost-effective manner will be of particular importance for this purpose. Findings from these large-scale exploratory functional studies can then be used to formulate more specific hypotheses to be explored in mammalian models. Here, I will discuss several strategies for functional exploration of big cancer data using Drosophila cancer models.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer [J].
Maity, Shreyasi ;
Mukherjee, Rishyani ;
Banerjee, Satarupa .
MOLECULAR BIOTECHNOLOGY, 2023, 65 (02) :206-226
[22]   A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer Research and Precision Medicine [J].
Hinkson, Izumi V. ;
Davidsen, Tanja M. ;
Klemm, Juli D. ;
Chandramouliswaran, Ishwar ;
Kerlavage, Anthony R. ;
Kibbe, Warren A. .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2017, 5
[23]   Cancer's Big Data Problem [J].
Breaux, Justin H. S. .
COMPUTING IN SCIENCE & ENGINEERING, 2017, 19 (02) :79-81
[24]   Big Data in Head and Neck Cancer [J].
Resteghini, Carlo ;
Trama, Annalisa ;
Borgonovi, Elio ;
Hosni, Hykel ;
Corrao, Giovanni ;
Orlandi, Ester ;
Calareso, Giuseppina ;
De Cecco, Loris ;
Piazza, Cesare ;
Mainardi, Luca ;
Licitra, Lisa .
CURRENT TREATMENT OPTIONS IN ONCOLOGY, 2018, 19 (12)
[25]   Utilizing Big Data in Cancer Care [J].
Schlick, Cary Jo R. ;
Castle, Joshua P. ;
Bentrem, David J. .
SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2018, 27 (04) :641-+
[26]   Big Data in Head and Neck Cancer [J].
Carlo Resteghini ;
Annalisa Trama ;
Elio Borgonovi ;
Hykel Hosni ;
Giovanni Corrao ;
Ester Orlandi ;
Giuseppina Calareso ;
Loris De Cecco ;
Cesare Piazza ;
Luca Mainardi ;
Lisa Licitra .
Current Treatment Options in Oncology, 2018, 19
[27]   Big Data in Brazilian Cancer Surveillance [J].
Goncalves, Antonio Augusto ;
Pereira Barbosa, Jose Geraldo ;
Freire de Castro Silva, Sandro Luis ;
Fernandes Martins, Carlos Henrique ;
Cheng, Cezar .
PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEARABLE MICRO AND NANO TECHNOLOGIES FOR PERSONALIZED HEALTH (PHEALTH 2018), 2018, 249 :133-139
[28]   Functional exploration of copy number alterations in a Drosophila model of triple-negative breast cancer [J].
Diaz, Jennifer E. L. ;
Barcessat, Vanessa ;
Bahamon, Christian ;
Hecht, Chana ;
Das, Tirtha K. ;
Cagan, Ross L. .
DISEASE MODELS & MECHANISMS, 2024, 17 (07)
[29]   A QUANTITATIVE QUALITY CONTROL METHOD OF BIG DATA IN CANCER PATIENTS USING ARTIFICIAL NEURAL NETWORK [J].
Shen, Hong ;
Meng, Jinglei ;
Yu, Licheng ;
Fang, Xuefeng ;
Chen, Tianzhou ;
Yan, Hui ;
Hou, Honglun .
2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2014, :499-504
[30]   Prevalence of cancer in patients with hypothyroidism: Analysis using big data tools [J].
Diez, Juan J. ;
Cabrera, Luis ;
Iglesias, Pedro ;
Benavent, Maria ;
Arguello, Guillermo ;
Lopez, Guillermo ;
Parralejo, Alejandro ;
Leal, Javier .
ENDOCRINOLOGIA DIABETES Y NUTRICION, 2023, 70 :50-58