Rank and symbolic complexity

被引:70
作者
Ferenczi, S [1 ]
机构
[1] INST MATH,CNRS UPR 9016,F-13288 MARSEILLE 9,FRANCE
关键词
D O I
10.1017/S0143385700009032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the relation between the complexity function of a sequence, that is the number p(n) of its factors of length n, and the rank of the associated dynamical system, that is the number of Rokhlin towers required to approximate it. We prove that if the rank is one, then lim inf(n --> + infinity)p(n)/n(2) less than or equal to 1/2, but give examples with lim sup(n --> + infinity)p(n)/G(n) = 1 for any prescribed function G with G(n) = o(a(n)) for every a > 1. We give exact computations for examples of the 'staircase' type, which are strongly mixing systems with quadratic complexity. Conversely, for minimal sequences, if p(n) < an + b for some a greater than or equal to 1, the rank is at most 2[a], with bounded strings of spacers, and the system is generated by a finite number of substitutions.
引用
收藏
页码:663 / 682
页数:20
相关论文
共 14 条
[1]  
ADAMS TM, 1992, UNPUB STAIRCASE MIXI
[2]  
ADAMS TM, 1993, SMORODINSKYS CONJECT
[3]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[4]  
CASSAIGNE J, FACTEURS SPECIAUX SU
[5]  
CHACON RV, 1965, P 5 BERK S MATH STAT, P335
[6]  
Cobham A., 1972, MATH SYST THEORY, V6, P164, DOI 10.1007/BF01706087
[7]  
DELJUNCO A, 1976, CAN J MATH, V24, P836
[8]   Chacon transformations: Combinatorics, geometric structure, link with systems of complexity 2n+1 [J].
Ferenczi, S .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1995, 123 (02) :271-292
[9]  
HEDLUND GA, 1938, AM J MATH, V60, P815
[10]  
HEDLUND GA, 1940, AM J MATH, V62, P1