On Some Operations on Soft Topological Spaces

被引:6
作者
Matejdes, Milan [1 ]
机构
[1] Trnava Univ Trnava, Fac Educ, Dept Math & Comp Sci, Priemyselna 4, Trnava 91843, Slovakia
关键词
Soft set; soft topological space; homogeneity; topological sum; Cartesian product of functions; product topology; SEPARATION AXIOMS;
D O I
10.2298/FIL2105693M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the article is to point out a one-to-one correspondence between soft topological spaces over a universe U with respect to a parameter set E and topological ones on the Cartesian product E x U. From this point of view, all soft topological terms, soft operations, soft functions and properties of soft topological spaces are actually topological concepts. Because the set valued mappings and set valued analysis have great application potential, it is necessary to look for their meaningful use with respect to standard topological methods and set valued analysis procedures.
引用
收藏
页码:1693 / 1705
页数:13
相关论文
共 21 条
[1]   On some generated soft topological spaces and soft homogeneity [J].
Al Ghour, Samer ;
Bin-Saadon, Awatef .
HELIYON, 2019, 5 (07)
[2]   Comments on some results related to soft separation axioms [J].
Al-shami, T. M. .
AFRIKA MATEMATIKA, 2020, 31 (7-8) :1105-1119
[3]   Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone [J].
Al-shami, T. M. ;
El-Shafei, M. E. .
SOFT COMPUTING, 2020, 24 (07) :5377-5387
[4]   Sum of Soft Topological Spaces [J].
Al-shami, Tareq M. ;
Kocinac, Ljubisa D. R. ;
Asaad, Baravan A. .
MATHEMATICS, 2020, 8 (06)
[5]  
Al-shami TM, 2019, APPL COMPUT MATH-BAK, V18, P149
[6]   Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem [J].
El-Shafei, M. E. ;
Al-shami, T. M. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)
[7]   Partial Soft Separation Axioms and Soft Compact Spaces [J].
El-Shafei, M. E. ;
Abo-Elhamayel, M. ;
Al-shami, T. M. .
FILOMAT, 2018, 32 (13) :4755-4771
[8]  
Engelking R., 1977, General Topology
[9]   Finite homogeneous spaces [J].
Fora, A ;
Al-Bsoul, A .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1089-1094
[10]   A STRUCTURE THEOREM IN FINITE TOPOLOGY [J].
GINSBURG, J .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (01) :121-122