AN EFFICIENT ANCHOR-FREE UNIVERSAL LESION DETECTION IN CT-SCANS

被引:7
作者
Sheoran, Manu [1 ]
Dani, Meghal [1 ]
Sharma, Monika [1 ]
Vig, Lovekesh [1 ]
机构
[1] TCS Res, New Delhi, India
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Universal Lesion Detection; CADe/x; Medical Image Analysis; One-stage Detector; CT-scans;
D O I
10.1109/ISBI52829.2022.9761698
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Existing universal lesion detection (ULD) methods utilize compute-intensive anchor-based architectures which rely on predefined anchor boxes, resulting in unsatisfactory detection performance, especially in small and mid-sized lesions. Further, these default fixed anchor-sizes and ratios do not generalize well to different datasets. Therefore, we propose a robust one-stage anchor-free lesion detection network that can perform well across varying lesions sizes by exploiting the fact that the box predictions can be sorted for relevance based on their center rather than their overlap with the object. Furthermore, we demonstrate that the ULD can be improved by explicitly providing it the domain-specific information in the form of multi-intensity images generated using multiple HU windows, followed by self-attention based feature-fusion and backbone initialization using weights learned via selfsupervision over CT-scans. We obtain comparable results to the state-of-the-art methods, achieving an overall sensitivity of 86.05% on the DeepLesion dataset, which comprises of approximately 32K CT-scans with lesions annotated across various body organs.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[2]  
Grill, 2020, arXiv
[3]  
He K., 2017, P IEEE INT C COMPUTE, P2980, DOI [DOI 10.1109/ICCV.2017.322, 10.1109/ICCV.2017.322]
[4]   MVP-Net: Multi-view FPN with Position-Aware Attention for Deep Universal Lesion Detection [J].
Li, Zihao ;
Zhang, Shu ;
Zhang, Junge ;
Huang, Kaiqi ;
Wang, Yizhou ;
Yu, Yizhou .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 :13-21
[5]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[6]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[7]   MLANet: Multi-Layer Anchor-free Network for generic lesion detection [J].
Liu, Zhe ;
Xie, Xi ;
Song, Yuqing ;
Zhang, Yang ;
Liu, Xuesheng ;
Zhang, Jiawen ;
Sheng, Victor S. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 102 (102)
[8]   Quick guide on radiology image pre-processing for deep learning applications in prostate cancer research [J].
Masoudi, Samira ;
Harmon, Stephanie A. ;
Mehralivand, Sherif ;
Walker, Stephanie M. ;
Raviprakash, Harish ;
Bagci, Ulas ;
Choyke, Peter L. ;
Turkbey, Baris .
JOURNAL OF MEDICAL IMAGING, 2021, 8 (01)
[9]  
Ren S, 2015, PROC ADVNEURAL INF P
[10]   FCOS: Fully Convolutional One-Stage Object Detection [J].
Tian, Zhi ;
Shen, Chunhua ;
Chen, Hao ;
He, Tong .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9626-9635