The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction

被引:26
作者
Duggleby, A. [1 ]
Ball, K. S. [1 ]
Paul, M. R. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2825428
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The results of a comparative analysis based upon a Karhunen-Loeve expansion of turbulent pipe flow and drag reduced turbulent pipe flow by spanwise wall oscillation are presented. The turbulent flow is generated by a direct numerical simulation at a Reynolds number Re-tau=150. The spanwise wall oscillation is imposed as a velocity boundary condition with an amplitude of A(+)=20 and a period of T (+)=50. The wall oscillation results in a 27% mean velocity increase when the flow is driven by a constant pressure gradient. The peaks of the Reynolds stress and root-mean-squared velocities shift away from the wall and the Karhunen-Loeve dimension of the turbulent attractor is reduced from 2763 to 1080. The coherent vorticity structures are pushed away from the wall into higher speed flow, causing an increase of their advection speed of 34% as determined by a normal speed locus. This increase in advection speed gives the propagating waves less time to interact with the roll modes. This leads to less energy transfer and a shorter lifespan of the propagating structures, and thus less Reynolds stress production which results in drag reduction.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 110436 NASA
[2]   DYNAMIC EIGENFUNCTION DECOMPOSITION OF TURBULENT CHANNEL FLOW [J].
BALL, KS ;
SIROVICH, L ;
KEEFE, LR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1991, 12 (06) :585-604
[3]   Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows [J].
Choi, JI ;
Xu, CX ;
Sung, HJ .
AIAA JOURNAL, 2002, 40 (05) :842-850
[4]  
Choi K.-S., 1997, 971795 AIAA
[5]   Drag reduction of turbulent pipe flows by circular-wall oscillation [J].
Choi, KS ;
Graham, M .
PHYSICS OF FLUIDS, 1998, 10 (01) :7-9
[6]   Near-wall structure of turbulent boundary layer with spanwise-wall oscillation [J].
Choi, KS .
PHYSICS OF FLUIDS, 2002, 14 (07) :2530-2542
[7]   The mechanism of turbulent drag reduction with wall oscillation [J].
Choi, KS ;
Clayton, BR .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2001, 22 (01) :1-9
[8]  
CHOI KS, 2006, NATURE, V440, P7085
[9]   A GENERAL CLASSIFICATION OF 3-DIMENSIONAL FLOW-FIELDS [J].
CHONG, MS ;
PERRY, AE ;
CANTWELL, BJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (05) :765-777
[10]   Dynamical eigenfunction decomposition of turbulent pipe flow [J].
Duggleby, Andrew ;
Ball, Kenneth S. ;
Paul, Mark R. ;
Fischer, Paul F. .
JOURNAL OF TURBULENCE, 2007, 8 (43) :1-24