High-Resolution Snow Depth on Arctic Sea Ice From Low-Altitude Airborne Microwave Radar Data

被引:14
作者
Jutila, Arttu [1 ]
King, Joshua [2 ]
Paden, John [3 ]
Ricker, Robert [1 ]
Hendricks, Stefan [1 ]
Polashenski, Chris [4 ,5 ]
Helm, Veit [6 ]
Binder, Tobias [6 ,7 ]
Haas, Christian [1 ]
机构
[1] Alfred Wegener Inst Helmholtz Zentrum Polar & Mee, Sea Ice Phys Sect, D-27570 Bremerhaven, Germany
[2] Environm & Climate Change Canada ECCC, Climate Res Div, Toronto, ON M3H 5T4, Canada
[3] Univ Kansas, Ctr Remote Sensing Ice Sheets CReSIS, Lawrence, KS 66045 USA
[4] US Army Corps Engineers, Cold Reg Res & Engn Lab USACE CRREL Alaska Projec, Ft Wainwright, AK 99703 USA
[5] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[6] Alfred Wegener Inst Helmholtz Zentrum Polar & Mee, Glaciol Sect, D-27570 Bremerhaven, Germany
[7] Ibeo Automot Syst GmbH, D-22143 Hamburg, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
美国国家科学基金会;
关键词
Snow; Radar; Sea ice; Airborne radar; Spaceborne radar; Sea measurements; Radar measurements; Airborne; microwave; radar; sea ice; snow; MASS-BALANCE BUOYS; THICKNESS; FREEBOARD; RETRIEVAL; CRYOSAT-2; BAND; TEMPERATURE; NORTH;
D O I
10.1109/TGRS.2021.3063756
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present new high-resolution snow depth data on Arctic sea ice derived from airborne microwave radar measurements from the IceBird campaigns of the Alfred Wegener Institute (AWI) together with a new retrieval method using signal peakiness based on an intercomparison exercise of colocated data at different altitudes. We aim to demonstrate the capabilities and potential improvements of radar data, which were acquired at a lower altitude (200 ft) and slower speed (110 kn) and had a smaller radar footprint size (2-m diameter) than previous airborne snow radar data. So far, AWI Snow Radar data have been derived using a 2-18-GHz ultrawideband frequency-modulated continuous-wave (FMCW) radar in 2017-2019. Our results show that our method in combination with thorough calibration through coherent noise removal and system response deconvolution significantly improves the quality of the radar-derived snow depth data. The validation against a 2-D grid of in situ snow depth measurements on level landfast first-year ice indicates a mean bias of only 0.86 cm between radar and ground truth. Comparison between the radar-derived snow depth estimates from different altitudes shows good consistency. We conclude that the AWI Snow Radar aboard the IceBird campaigns is able to measure the snow depth on Arctic sea ice accurately at higher spatial resolution than but consistent with the existing airborne snow radar data of NASA Operation IceBridge. Together with the simultaneous measurements of the total ice thickness and surface freeboard, the IceBird campaign data will be able to describe the whole sea-ice column on regional scales.
引用
收藏
页数:16
相关论文
共 60 条
[1]  
Alfred-Wegener-Institut Helmholtz-Zentrum fur Polarund Meeresforschung, 2016, Journal of largescale research facilities JLSRF, V2, pA87, DOI [10.17815/jlsrf-2-153, DOI 10.17815/JLSRF-2-153]
[2]  
Arnold E, 2018, INT GEOSCI REMOTE SE, P7902, DOI 10.1109/IGARSS.2018.8519009
[3]   Sea ice concentration, ice temperature, and snow depth using AMSR-E data [J].
Comiso, JC ;
Cavalieri, DJ ;
Markus, T .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :243-252
[4]  
CReSIS, CRESIS TOOLB POL RAD
[5]   A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice [J].
Farrell, Sinead Louise ;
Kurtz, Nathan ;
Connor, Laurence N. ;
Elder, Bruce C. ;
Leuschen, Carlton ;
Markus, Thorsten ;
McAdoo, David C. ;
Panzer, Ben ;
Richter-Menge, Jacqueline ;
Sonntag, John G. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (06) :2098-2111
[6]   Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002 [J].
Giles, K. A. ;
Laxon, S. W. ;
Wingham, D. J. ;
Wallis, D. W. ;
Krabill, W. B. ;
Leuschen, C. J. ;
McAdoo, D. ;
Manizade, S. S. ;
Raney, R. K. .
REMOTE SENSING OF ENVIRONMENT, 2007, 111 (2-3) :182-194
[7]   Snow contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard [J].
Granskog, Mats A. ;
Rosel, Anja ;
Dodd, Paul A. ;
Divine, Dmitry ;
Gerland, Sebastian ;
Martma, Tonu ;
Leng, Melanie J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2017, 122 (03) :2539-2549
[8]   Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL/AltiKa missions [J].
Guerreiro, Kevin ;
Fleury, Sara ;
Zakharova, Elena ;
Remy, Frederique ;
Kouraev, Alexei .
REMOTE SENSING OF ENVIRONMENT, 2016, 186 :339-349
[9]   Synoptic airborne thickness surveys reveal state of Arctic sea ice cover [J].
Haas, Christian ;
Hendricks, Stefan ;
Eicken, Hajo ;
Herber, Andreas .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[10]  
Hendricks S., 2019, ICEBIRD 2019 WINTER