Strong approximation default in connected linear groups

被引:16
作者
Demarche, Cyril [1 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
关键词
REDUCTIVE GROUP SCHEMES; HOMOGENEOUS SPACES; ALGEBRAIC-GROUPS; COHOMOLOGY;
D O I
10.1112/plms/pdq033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected linear algebraic group over a number field k. We establish an exact sequence describing the closure of the group G(k) of rational points of G in the group of adelic points of G. This exact sequence describes the defect of strong approximation on G in terms of the algebraic Brauer group of G. In particular, we deduce from those results that the integral Brauer-Manin obstruction on a torsor under the group G is the only obstruction to the existence of an integral point on this torsor. We also obtain a non-abelian Poitou-Tate exact sequence for the Galois cohomology of the linear group G. The main ingredients in the proof of those results are the local and global duality theorems for complexes of k-tori of length two and the abelianization maps in Galois cohomology introduced by Borovoi.
引用
收藏
页码:563 / 597
页数:35
相关论文
共 38 条
[1]  
[Anonymous], 1973, Sur les groupes algebriques
[2]  
[Anonymous], 1980, PRINCETON MATH SERIE
[3]  
[Anonymous], 1973, Lecture Notes in Mathematics
[4]  
[Anonymous], 2008, GRUNDLEHREN MATH WIS
[5]  
Artin M., 1973, LECT NOTES MATH, V270
[6]  
ARTIN M, 1973, LECT NOTES MATH, V305
[7]  
Borovoi M, 1998, MEM AM MATH SOC, V132, P1
[8]  
Borovoi M, 1996, J REINE ANGEW MATH, V473, P181
[9]   Extended Picard complexes and linear algebraic groups [J].
Borovoi, Mikhail ;
van Hamel, Joost .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 627 :53-82
[10]   ABELIANIZATION OF THE 2ND NONABELIAN GALOIS COHOMOLOGY [J].
BOROVOI, MV .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :217-239