Asymptotic Behavior of a Periodic Diffusion System

被引:0
作者
Li, Songsong [1 ,2 ]
Hui, Xiaofeng [1 ]
机构
[1] Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China
[2] Harbin Univ, Sch Finance & Econ Management, Harbin 150086, Peoples R China
关键词
GLOBAL EXISTENCE; PARABOLIC-SYSTEM; BLOW-UP; WEAK SOLUTIONS; EQUATIONS;
D O I
10.1155/2010/764703
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of the nonnegative solutions of a periodic reaction diffusion system. By obtaining a priori upper bound of the nonnegative periodic solutions of the corresponding periodic diffusion system, we establish the existence of the maximum periodic solution and the asymptotic boundedness of the nonnegative solutions of the initial boundary value problem.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Amann H., 1978, Nonlinear Analysis, Collection of Papers in Honor of Erich H, P1
[2]  
[Anonymous], 1968, Amer. Math. Soc., Transl. Math. Monographs
[3]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[4]   PERMANENCE IN ECOLOGICAL-SYSTEMS WITH SPATIAL HETEROGENEITY [J].
CANTRELL, RS ;
COSNER, C ;
HUTSON, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1993, 123 :533-559
[5]   BLOW-UP ESTIMATES OF POSITIVE SOLUTIONS OF A PARABOLIC-SYSTEM [J].
CARISTI, G ;
MITIDIERI, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (02) :265-271
[6]   Global existence and blow-up for a nonlinear reaction-diffusion system [J].
Chen, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :481-492
[7]   Global existence and finite time blow up for a degenerate reaction-diffusion system [J].
Deng, WB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (05) :977-991
[8]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[9]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[10]  
Galaktionov V. A., 1983, Differentsial'nye Uravneniya, V19, P2123