Zinc-Catalyzed Depolymerization of the End-of-Life Poly(ethylene 2,5-furandicarboxylate)

被引:15
作者
Alberti, Christoph [1 ]
Matthiesen, Konstantin [1 ]
Wehrmeister, Moritz [1 ]
Bycinskij, Sergej [1 ]
Enthaler, Stephan [1 ]
机构
[1] Univ Hamburg, Inst Anorgan & Angew Chem, Martin Luther King Pl 6, D-20146 Hamburg, Germany
来源
CHEMISTRYSELECT | 2021年 / 6卷 / 31期
关键词
catalysis; depolymerization; green chemistry; polymers; recycling; PLASTIC WASTE; METHANOLYSIS; POLYMERS; PEF;
D O I
10.1002/slct.202102427
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The depolymerization of end-of-life polymers to valued chemicals (waste-to-chemicals) can be a suitable tool for the transformation from a linear to a circular economy. Therefore, the depolymerization of end-of-life poly(ethylene 2,5-furandicarboxylate), discussed as sustainable substitute of poly(ethylene terephthalate), was studied. In more detail, in the presence of catalytic amounts of zinc(II) acetate poly(ethylene 2,5-furandicarboxylate) was converted by methanolysis to dimethyl 2,5-furandicarboxylate and ethylene glycol using microwave heating. Turnover frequencies up to 396 h(1) were realized. Interestingly, the products dimethyl 2,5-furandicarboxylate and ethylene glycol can be used as building blocks for the zinc-catalyzed resynthesis of poly(ethylene 2,5-furandicarboxylate); therefore a recycling is realizable.
引用
收藏
页码:7972 / 7975
页数:4
相关论文
共 44 条
[21]  
Greene JP, 2014, Sustainable Plastics: Environmental Assessments of Biobased, Biodegradable, and Recycled Plastics, P1, DOI 10.1002/9781118899595
[22]   Zinc(II) acetate Catalyzed Depolymerization of Poly(ethylene terephthalate) [J].
Hofmann, Melanie ;
Sundermeier, Jannis ;
Alberti, Christoph ;
Enthaler, Stephan .
CHEMISTRYSELECT, 2020, 5 (32) :10010-10014
[23]   Tin(ii) 2-ethylhexanoate catalysed methanolysis of end-of-life poly(lactide) [J].
Hofmann, Melanie ;
Alberti, Christoph ;
Scheliga, Felix ;
Meissner, Roderich R. ;
Enthaler, Stephan .
POLYMER CHEMISTRY, 2020, 11 (15) :2625-2629
[24]   Chemically recyclable polymers: a circular economy approach to sustainability [J].
Hong, Miao ;
Chen, Eugene Y. -X. .
GREEN CHEMISTRY, 2017, 19 (16) :3692-3706
[25]   Recycling of Polymers: A Review [J].
Ignatyev, Igor A. ;
Thielemans, Wim ;
Vander Beke, Bob .
CHEMSUSCHEM, 2014, 7 (06) :1579-1593
[26]   Chemical recycling of PET by glycolysis: Polymerization and characterization of the dimethacrylated glycolysate [J].
Karayannidis, George P. ;
Nikolaidis, Alexandros K. ;
Sideridou, Irini D. ;
Bikiaris, Dimitris N. ;
Achilias, Dimitris S. .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2006, 291 (11) :1338-1347
[27]  
Kucherov F., 2017, Angew. Chemie, V129, P16147, DOI [DOI 10.1002/ANGE.201708528, 10.1002/ange.201708528]
[28]   Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing [J].
Kucherov, Fedor A. ;
Gordeev, Evgeny G. ;
Kashin, Alexey S. ;
Ananikov, Valentine P. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :15931-15935
[29]   Valorisation of plastic waste via metal-catalysed depolymerisation [J].
Liguori, Francesca ;
Moreno-Marrodan, Carmen ;
Barbaro, Pierluigi .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2021, 17 :589-621
[30]   A Perspective on PEF Synthesis, Properties, and End-Life [J].
Loos, Katja ;
Zhang, Ruoyu ;
Pereira, Ines ;
Agostinho, Beatriz ;
Hu, Han ;
Maniar, Dina ;
Sbirrazzuoli, Nicolas ;
Silvestre, Armando J. D. ;
Guigo, Nathanael ;
Sousa, Andreia F. .
FRONTIERS IN CHEMISTRY, 2020, 8