Effect of the charge balance on high-efficiency inverted polymer light-emitting diodes

被引:11
作者
Huang, Qingyu [1 ,2 ]
Zhao, Suling [1 ]
Guo, L. Jay [2 ]
Xu, Zheng [1 ]
Wang, Peng [1 ]
Qin, Zilun [1 ]
机构
[1] Beijing Jiaotong Univ, Key Lab Luminescence & Opt Informat, Minist Educ, Beijing 100044, Peoples R China
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48105 USA
基金
中国国家自然科学基金;
关键词
Inverted polymer light emitting devices; Charge balance; Electron injection; Hole injection; ELECTRON-INJECTION; QUANTUM DOTS; LAYER; ELECTROLUMINESCENCE; PERFORMANCE; DEVICES;
D O I
10.1016/j.orgel.2017.05.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, an ultra-thin insulating layer, poly(methylmethacrylate) (PMMA), is incorporated between the emissive layer (EML) and hole transporting layer (HTL) within the inverted polymer light-emitting diodes (PLEDs). Such a structure helps to reduce the hole injection and balance the electrons and holes in the EML. PLEDs with optimal PMMA thickness of around 5.6 nm is observed to obtain a maximum current efficiency of 14.33 cd A(-1), which corresponds to 7.07% improvement compared to that of the device without PMMA layer (13.5 cd A(-1)). The device with best performance exhibits a superior low driving voltage of 2.5 V at 1 cd m(-2) and shows a lower efficiency roll-off current efficiency which sustains 85% of the maximum value when the current density reaches 140 mA cm(-2). (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 2015, ADV ENERGY MAT
[2]   Inverted solution processable OLEDs using a metal oxide as an electron injection contact [J].
Bolink, Henk J. ;
Coronado, Eugenio ;
Repetto, Diego ;
Sessolo, Michele ;
Barea, Eva M. ;
Bisquert, Juan ;
Garcia-Belmonte, Germa ;
Prochazka, Jan ;
Kavan, Ladislav .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (01) :145-150
[3]   Influence of sensitizer on organic electroluminescence [J].
Chen, ZJ ;
Yu, JS ;
Sakuratani, Y ;
Li, MR ;
Sone, M ;
Miyata, S ;
Watanabe, T ;
Wang, XQ ;
Sato, H .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (12) :7895-7898
[4]   Solution-processed, high-performance light-emitting diodes based on quantum dots [J].
Dai, Xingliang ;
Zhang, Zhenxing ;
Jin, Yizheng ;
Niu, Yuan ;
Cao, Hujia ;
Liang, Xiaoyong ;
Chen, Liwei ;
Wang, Jianpu ;
Peng, Xiaogang .
NATURE, 2014, 515 (7525) :96-99
[5]   The path to ubiquitous and low-cost organic electronic appliances on plastic [J].
Forrest, SR .
NATURE, 2004, 428 (6986) :911-918
[6]   Measuring the efficiency of organic light-emitting devices [J].
Forrest, SR ;
Bradley, DDC ;
Thompson, ME .
ADVANCED MATERIALS, 2003, 15 (13) :1043-1048
[7]   Photophysical and charge-transporting properties of the copolymer SuperYellow [J].
Gambino, Salvatore ;
Bansal, Ashu K. ;
Samuel, Ifor D. W. .
ORGANIC ELECTRONICS, 2013, 14 (08) :1980-1987
[8]   Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes by Combined Solution-Processed Zinc Oxide/Polyethylenimine Inter layers [J].
Hoefle, Stefan ;
Schienle, Alexander ;
Bruns, Michael ;
Lemmer, Uli ;
Colsmann, Alexander .
ADVANCED MATERIALS, 2014, 26 (17) :2750-2754
[9]   Energy Upconversion via Triplet Fusion in Super Yellow PPV Films Doped with Palladium Tetraphenyltetrabenzoporphyrin: a Comprehensive Investigation of Exciton Dynamics [J].
Jankus, Vygintas ;
Snedden, Edward W. ;
Bright, Daniel W. ;
Whittle, Victoria L. ;
Williams, J. A. G. ;
Monkman, Andy .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (03) :384-393
[10]   Electroluminescence in organics [J].
Kalinowski, J .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (24) :R179-R249