Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review

被引:129
作者
Hedayati, Mehdi Keshavarz [1 ]
Elbahri, Mady [1 ,2 ,3 ]
机构
[1] Univ Kiel, Fac Engn, Inst Mat Sci, Nanochem & Nanoengn, D-24143 Kiel, Germany
[2] Helmholtz Zentrum Geesthacht, Nanochem & Nanoengn, D-21502 Geesthacht, Germany
[3] Aalto Univ, Sch Chem Technol, Nanochem & Nanoengn, Kemistintie 1, Aalto 00076, Finland
关键词
antireflective coating; plasmonic metasurface; absorbing antireflective coating; antireflection; LOW-REFRACTIVE-INDEX; SILICON SOLAR-CELLS; CHEMICAL-VAPOR-DEPOSITION; BROAD-BAND; OPTICAL-PROPERTIES; SINGLE-LAYER; MESOPOROUS SILICA; HIGH-PERFORMANCE; GEL PREPARATION; POLYMER-FILMS;
D O I
10.3390/ma9060497
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reduction of unwanted light reflection from a surface of a substance is very essential for improvement of the performance of optical and photonic devices. Antireflective coatings (ARCs) made of single or stacking layers of dielectrics, nano/microstructures or a mixture of both are the conventional design geometry for suppression of reflection. Recent progress in theoretical nanophotonics and nanofabrication has enabled more flexibility in design and fabrication of miniaturized coatings which has in turn advanced the field of ARCs considerably. In particular, the emergence of plasmonic and metasurfaces allows for the realization of broadband and angular-insensitive ARC coatings at an order of magnitude thinner than the operational wavelengths. In this review, a short overview of the development of ARCs, with particular attention paid to the state-of-the-art plasmonic- and metasurface-based antireflective surfaces, is presented.
引用
收藏
页数:22
相关论文
共 162 条
  • [11] Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures
    Bauer, Christina
    Giessen, Harald
    [J]. OPTICS EXPRESS, 2013, 21 (09): : A363 - A371
  • [12] ANISOTROPIC ETCHING OF SILICON
    BEAN, KE
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1978, 25 (10) : 1185 - 1193
  • [13] BERNHARD CG, 1967, ENDEAVOUR, V26, P79
  • [14] INFRARED ABSORPTION AT LONGITUDINAL OPTIC FREQUENCY IN CUBIC CRYSTAL FILMS
    BERREMAN, DW
    [J]. PHYSICAL REVIEW, 1963, 130 (06): : 2193 - &
  • [15] Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells
    Bouhafs, D
    Moussi, A
    Chikouche, A
    Ruiz, JM
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 52 (1-2) : 79 - 93
  • [16] BROAD-BAND MULTILAYER ANTIREFLECTION COATING FOR SEMICONDUCTOR-LASER FACETS
    BRAUN, DM
    JUNGERMAN, RL
    [J]. OPTICS LETTERS, 1995, 20 (10) : 1154 - 1156
  • [17] BRINKER CJ, 1981, SOL ENERG MATER, V5, P159, DOI 10.1016/0165-1633(81)90027-7
  • [18] Recent advances in chalcogenide glasses
    Bureau, B
    Zhang, XH
    Smektala, F
    Adam, JL
    Troles, J
    Ma, HL
    Boussard-Plèdel, C
    Lucas, J
    Lucas, P
    Le Coq, D
    Riley, MR
    Simmons, JH
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 345 : 276 - 283
  • [19] Recent advances in antireflective surfaces based on nanostructure arrays
    Cai, Jinguang
    Qi, Limin
    [J]. MATERIALS HORIZONS, 2015, 2 (01) : 37 - 53
  • [20] LIGHT TRAPPING PROPERTIES OF PYRAMIDALLY TEXTURED SURFACES
    CAMPBELL, P
    GREEN, MA
    [J]. JOURNAL OF APPLIED PHYSICS, 1987, 62 (01) : 243 - 249