Curvature flow in hyperbolic spaces

被引:12
作者
Andrews, Ben [1 ,2 ]
Chen, Xuzhong [3 ]
机构
[1] Tsinghua Univ, Ctr Math Sci, Beijing, Peoples R China
[2] Australia Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[3] East China Normal Univ, Dept Math, Shanghai, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2017年 / 729卷
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
DEFORMING CONVEX HYPERSURFACES; MEAN-CURVATURE; GAUSS CURVATURE; SCALAR CURVATURE; SURFACES; POWERS; CONTRACTION; SPHERES; ROOT;
D O I
10.1515/crelle-2014-0121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the evolution of compact convex hypersurfaces in hyperbolic space Hn+1, with normal speed governed by the curvature. We concentrate mostly on the case of surfaces, and show that under a large class of natural flows, any compact initial surface with Gauss curvature greater than 1 produces a solution which converges to a point in finite time, and becomes spherical as the final time is approached. We also consider the higher-dimensional case, and show that under the mean curvature flow a similar result holds if the initial hypersurface is compact with positive Ricci curvature.
引用
收藏
页码:29 / 49
页数:21
相关论文
共 29 条
[1]  
Alessandroni R, 2010, ANN SCUOLA NORM-SCI, V9, P541
[3]  
ANDREWS B, 1994, J DIFFER GEOM, V39, P407
[4]   Gauss curvature flow: the fate of the rolling stones [J].
Andrews, B .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :151-161
[5]  
Andrews B., 2002, POSITIVELY CURVED SU, P221
[6]  
Andrews B., 2004, PREPRINT
[7]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[8]  
Andrews B, 2012, PURE APPL MATH Q, V8, P825
[9]   CONVEX HYPERSURFACES WITH PINCHED PRINCIPAL CURVATURES AND FLOW OF CONVEX HYPERSURFACES BY HIGH POWERS OF CURVATURE [J].
Andrews, Ben ;
McCoy, James .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (07) :3427-3447
[10]   Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem [J].
Andrews, Ben ;
Hopper, Christopher .
RICCI FLOW IN RIEMANNIAN GEOMETRY: A COMPLETE PROOF OF THE DIFFERENTIABLE 1/4-PINCHING SPHERE THEOREM, 2011, 2011 :1-+