ASYMPTOTIC STABILITY OF THE PHASE-HOMOGENEOUS SOLUTION TO THE KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA

被引:2
|
作者
Choi, Young-Pil [1 ]
Ha, Seung-Yeal [2 ,3 ,4 ]
Xiao, Qinghua [5 ]
Zhang, Yinglong [6 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 03722, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[4] Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South Korea
[5] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Peoples R China
[6] Korea Adv Inst Sci & Technol, Stochast Anal & Applicat Res Ctr, Daejeon 34141, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Cauchy problem; Kuramoto-Sakaguchi equation; synchronization; nonlinear Vlasov-Fokker-Planck equation; LOCKED STATES; MODEL; SYNCHRONIZATION; OSCILLATORS; POPULATIONS; BEHAVIOR; SYSTEM;
D O I
10.1137/20M1368719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present global-in-time existence and uniqueness of strong solutions around a phase-homogeneous solution, and its large-time behavior for the Kuramoto-Sakaguchi equation with inertia. Our governing equation describes the evolution of the probability density function for a large ensemble of Kuramoto oscillators under the effects of inertia and stochastic noises. In this paper, we take a perturbative framework around the Maxwellian type equilibrium and use the classical energy method together with careful analysis based on the decomposition of the perturbation. We establish the global-in-time existence and uniqueness of strong solutions with large initial data when the noise strength is large enough. For the large-time behavior, we show the exponential decay of solutions toward the equilibrium under the same assumptions as those for the global solutions.
引用
收藏
页码:3188 / 3235
页数:48
相关论文
共 50 条
  • [1] A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Ha, Seung-Yeal
    Shim, Woojoo
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1591 - 1638
  • [2] Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Xiao, Qinghua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2430 - 2457
  • [3] Emergence of phase concentration for the Kuramoto-Sakaguchi equation
    Ha, Seung-Yeal
    Kim, Young-Heon
    Morales, Javier
    Park, Jinyeong
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [4] KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Morales, Javier
    Zhang, Yinglong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2579 - 2612
  • [5] NONLINEAR STABILITY OF STATIONARY SOLUTIONS TO THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Park, Hansol
    Zhang, Yinglong
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (03) : 427 - 461
  • [6] Configurational stability for the Kuramoto-Sakaguchi model
    Bronski, Jared C.
    Carty, Thomas
    DeVille, Lee
    CHAOS, 2018, 28 (10)
  • [7] The Kuramoto-Sakaguchi nonlinear parabolic integrodifferential equation
    Lavrentiev, M
    Spigler, R
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 248 - 253
  • [8] From the Kuramoto-Sakaguchi model to the Kuramoto-Sivashinsky equation
    Kawamura, Yoji
    PHYSICAL REVIEW E, 2014, 89 (01)
  • [9] Numerical solution of the Kuramoto-Sakaguchi equation governing populations of coupled oscillators
    Sartoretto, F
    Spigler, R
    Vicente, CJP
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (06): : 1023 - 1038
  • [10] Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation
    Acebrón, JA
    Lavrentiev, MM
    Spigler, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 239 - 263