Random-cluster dynamics in Z2

被引:19
|
作者
Blanca, Antonio [1 ]
Sinclair, Alistair [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Random-cluster model; Glauber dynamics; Markov chains; Spatial mixing; Statistical physics; LATTICE SPIN SYSTEMS; SWENDSEN-WANG; MODEL; GRAPHS; REPRESENTATION;
D O I
10.1007/s00440-016-0725-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The random-cluster model has been widely studied as a unifying framework for random graphs, spin systems and electrical networks, but its dynamics have so far largely resisted analysis. In this paper we analyze the Glauber dynamics of the random-cluster model in the canonical case where the underlying graph is an box in the Cartesian lattice . Our main result is a upper bound for the mixing time at all values of the model parameter p except the critical point , and for all values of the second model parameter . We also provide a matching lower bound proving that our result is tight. Our analysis takes as its starting point the recent breakthrough by Beffara and Duminil-Copin on the location of the random-cluster phase transition in . It is reminiscent of similar results for spin systems such as the Ising and Potts models, but requires the reworking of several standard tools in the context of the random-cluster model, which is not a spin system in the usual sense.
引用
收藏
页码:821 / 847
页数:27
相关论文
共 50 条
  • [41] Proper 3-colorings of Z2 are Bernoulli
    Ray, Gourab
    Spinka, Yinon
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (06) : 2002 - 2027
  • [42] Empirical Geometry-Based Random-Cluster Model for High-Speed-Train Channels in UMTS Networks
    Yin, Xuefeng
    Cai, Xuesong
    Cheng, Xiang
    Chen, Jiajing
    Tian, Meng
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (05) : 2850 - 2861
  • [43] Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model, I. Two Dimensions
    Garoni, Timothy M.
    Ossola, Giovanni
    Polin, Marco
    Sokal, Alan D.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (03) : 459 - 518
  • [44] Z2 symmetry prediction for the leptonic Dirac CP phase
    Ge, Shao-Feng
    Dicus, Duane A.
    Repko, Wayne W.
    PHYSICS LETTERS B, 2011, 702 (04) : 220 - 223
  • [45] A dissipative time crystal with or without Z2 symmetry breaking
    Lledo, Cristobal
    Szymanska, Marzena H.
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [46] Splitting of the Brane on the Orbifold S1/Z2
    Tofighi, A.
    Farokhtabar, A.
    CHINESE JOURNAL OF PHYSICS, 2015, 53 (07) : 1 - 15
  • [47] Macroscopic quantum tunneling effect of Z2 topological order
    Yu, Jing
    Kou, Su-Peng
    PHYSICAL REVIEW B, 2009, 80 (07):
  • [48] Sampling from the random cluster model on random regular graphs at all temperatures via Glauber dynamics
    Galanis, Andreas
    Goldberg, Leslie Ann
    Smolarova, Paulina
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [49] LOW-TEMPERATURE ISING DYNAMICS WITH RANDOM INITIALIZATIONS
    Gheissari, Reza
    Sinclair, Alistair
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (05) : 3916 - 3957
  • [50] Low-Temperature Ising Dynamics with Random Initializations
    Gheissari, Reza
    Sinclair, Alistair
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1445 - 1458