Random-cluster dynamics in Z2

被引:19
|
作者
Blanca, Antonio [1 ]
Sinclair, Alistair [1 ]
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Random-cluster model; Glauber dynamics; Markov chains; Spatial mixing; Statistical physics; LATTICE SPIN SYSTEMS; SWENDSEN-WANG; MODEL; GRAPHS; REPRESENTATION;
D O I
10.1007/s00440-016-0725-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The random-cluster model has been widely studied as a unifying framework for random graphs, spin systems and electrical networks, but its dynamics have so far largely resisted analysis. In this paper we analyze the Glauber dynamics of the random-cluster model in the canonical case where the underlying graph is an box in the Cartesian lattice . Our main result is a upper bound for the mixing time at all values of the model parameter p except the critical point , and for all values of the second model parameter . We also provide a matching lower bound proving that our result is tight. Our analysis takes as its starting point the recent breakthrough by Beffara and Duminil-Copin on the location of the random-cluster phase transition in . It is reminiscent of similar results for spin systems such as the Ising and Potts models, but requires the reworking of several standard tools in the context of the random-cluster model, which is not a spin system in the usual sense.
引用
收藏
页码:821 / 847
页数:27
相关论文
共 50 条
  • [21] Quantum phase transitions out of a Z2 x Z2 topological phase
    Jahromi, Saeed S.
    Masoudi, S. Farhad
    Kargarian, Mehdi
    Schmidt, Kai Phillip
    PHYSICAL REVIEW B, 2013, 88 (21)
  • [22] On (Z2)k actions
    Pergher, PLQ
    TOPOLOGY AND ITS APPLICATIONS, 2002, 117 (01) : 105 - 112
  • [23] Sharp Phase Transition for the Random-Cluster Model with Summable External Magnetic Field
    Vila, R.
    MARKOV PROCESSES AND RELATED FIELDS, 2021, 27 (01) : 43 - 62
  • [24] A new computation of the critical point for the planar random-cluster model with q ≥ 1
    Duminil-Copin, Hugo
    Raoufi, Aran
    Tassion, Vincent
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 422 - 436
  • [25] The phase transitions of the random-cluster and Potts models on slabs with q ≥ 1 are sharp
    Manolescu, Ioan
    Raoufii, Aran
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [26] Z2 SIMP dark matter
    Bernal, Nicolas
    Chu, Xiaoyong
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (01):
  • [27] Z2 lattice Gerbe theory
    Johnston, Desmond A.
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [28] Finitary codings for the random-cluster model and other infinite-range monotone models
    Harel, Matan
    Spinka, Yinon
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [29] On the Ornstein-Zernike Behaviour for the Supercritical Random-Cluster Model on Zd, d ≥ 3
    Campanino, M.
    Gianfelice, M.
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (06) : 1456 - 1476
  • [30] On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model
    Collevecchio, Andrea
    Elci, Eren Metin
    Garoni, Timothy M.
    Weigel, Martin
    JOURNAL OF STATISTICAL PHYSICS, 2018, 170 (01) : 22 - 61