Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation

被引:100
|
作者
Li, Xiang [1 ,2 ,3 ,5 ]
Jia, Xiao-Dong [3 ]
Zhang, Wei [4 ,5 ]
Ma, Hui [5 ]
Luo, Zhong [5 ]
Li, Xu [6 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Minist Educ Safe Min Deep Met Mines, Key Lab, Shenyang 110819, Liaoning, Peoples R China
[3] Univ Cincinnati, Dept Mech Engn, NSF I UCR Ctr Intelligent Maintenance Syst, Cincinnati, OH 45221 USA
[4] Shenyang Aerosp Univ, Sch Aerosp Engn, Shenyang 110136, Peoples R China
[5] Northeastern Univ, Key Lab Vibrat & Control Aeroprop Syst, Minist Educ, Shenyang 110819, Peoples R China
[6] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Fault diagnosis; Model generalization; Auto-encoder; Rolling bearing; NEURAL-NETWORK;
D O I
10.1016/j.neucom.2019.12.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [21] A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
    Mao, Wentao
    Feng, Wushi
    Liu, Yamin
    Zhang, Di
    Liang, Xihui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 150
  • [22] Deep causal factorization network: A novel domain generalization method for cross-machine bearing fault diagnosis
    Jia, Sixiang
    Li, Yongbo
    Wang, Xinyue
    Sun, Dingyi
    Deng, Zichen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192
  • [23] Fault Diagnosis Based on A Stacked Sparse Auto-Encoder Network and KNN Classifier
    Yan, Zichen
    Yuan, Xianfeng
    Zhou, Fengyu
    Song, Yong
    Xu, Qingyang
    Shao, Yang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3129 - 3134
  • [24] A Wasserstein gradient-penalty generative adversarial network with deep auto-encoder for bearing intelligent fault diagnosis
    Xiong, Xiong
    Jiang, Hongkai
    Li, Xingqiu
    Niu, Maogui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (04)
  • [25] A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
    Wen, Long
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (01): : 136 - 144
  • [26] Bearing fault diagnosis based on the synchrosqueezed S transform and ensemble deep ridgelet auto-encoder
    Du X.
    Chen Z.
    Wang Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (14): : 59 - 68
  • [27] A Stacked Auto-Encoder Based Fault Diagnosis Model for Chemical Process
    Qiu, Yi
    Dai, Yiyang
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1303 - 1308
  • [28] Application of Kernel Auto-encoder Based on Firefly Optimization in Intershaft Bearing Fault Diagnosis
    Wang F.
    Liu X.
    Dun B.
    Deng G.
    Han Q.
    Li H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 58 - 64
  • [29] Reliable Fault Diagnosis of Bearings Using an Optimized Stacked Variational Denoising Auto-Encoder
    Yan, Xiaoan
    Xu, Yadong
    She, Daoming
    Zhang, Wan
    ENTROPY, 2022, 24 (01)
  • [30] A Novel Deep Learning Approach: Stacked Evolutionary Auto-encoder
    Cai, Yaoming
    Cai, Zhihua
    Zeng, Meng
    Liu, Xiaobo
    Wu, Jia
    Wang, Guangjun
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,