Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation

被引:105
作者
Li, Xiang [1 ,2 ,3 ,5 ]
Jia, Xiao-Dong [3 ]
Zhang, Wei [4 ,5 ]
Ma, Hui [5 ]
Luo, Zhong [5 ]
Li, Xu [6 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Minist Educ Safe Min Deep Met Mines, Key Lab, Shenyang 110819, Liaoning, Peoples R China
[3] Univ Cincinnati, Dept Mech Engn, NSF I UCR Ctr Intelligent Maintenance Syst, Cincinnati, OH 45221 USA
[4] Shenyang Aerosp Univ, Sch Aerosp Engn, Shenyang 110136, Peoples R China
[5] Northeastern Univ, Key Lab Vibrat & Control Aeroprop Syst, Minist Educ, Shenyang 110819, Peoples R China
[6] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Fault diagnosis; Model generalization; Auto-encoder; Rolling bearing; NEURAL-NETWORK;
D O I
10.1016/j.neucom.2019.12.033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, due to the rising industrial demands for intelligent machinery fault diagnosis with strong generalization, transfer learning techniques have been used to enhance adaptability of data-driven approaches. Particularly, the domain shift problem where training and testing data are sampled from different operating conditions of the same machine is well addressed. However, it is still difficult to prepare sufficient labeled data on the tested machine. Therefore, the idea of transferring fault diagnosis knowledge learned from one machine to different but related machines is motivated, and that is realized through a deep learning-based method in this paper. Features of different equipments are first projected into the same subspace using an auto-encoder structure, and cross-machine adaptation algorithm is adopted for knowledge generalization, where the distribution discrepancy between data from different machines is minimized. Experiments on three rolling bearing datasets are implemented to validate the proposed method. The results suggest it is feasible to transfer fault diagnosis knowledge across different machines, and the proposed method offers a novel and promising approach for knowledge generalization. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 49 条
[1]   Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks [J].
Abdeljaber, Osama ;
Avci, Onur ;
Kiranyaz, Serkan ;
Gabbouj, Moncef ;
Inman, Daniel J. .
JOURNAL OF SOUND AND VIBRATION, 2017, 388 :154-170
[2]   Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method [J].
An, Zenghui ;
Li, Shunming ;
Wang, Jinrui ;
Xin, Yu ;
Xu, Kun .
NEUROCOMPUTING, 2019, 352 :42-53
[3]  
Chai Z., 2019, IEEE T IND INF, P1
[4]  
Csurka G., 2017, ARXIV 1702 05374
[5]  
Dahl GE, 2013, INT CONF ACOUST SPEE, P8609, DOI 10.1109/ICASSP.2013.6639346
[6]  
Donahue J, 2014, PR MACH LEARN RES, V32
[7]  
Glorot X., 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705
[8]  
Gong B., 2013, P INT C MACH LEARN, P222, DOI DOI 10.5555/3042817.3042844
[9]  
Gretton A., 2012, Advances in Neural Information Processing Systems (NeurIPS)
[10]  
Gretton A, 2012, J MACH LEARN RES, V13, P723