MANIFOLD LEARNING FOR SIMULTANEOUS POSE AND FACIAL EXPRESSION RECOGNITION

被引:0
作者
Ptucha, Raymond [1 ,3 ]
Tsagkatakis, Grigorios [1 ]
Savakis, Andreas [2 ]
机构
[1] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA
[2] Rochester Inst Technol, Comp Engn, Rochester, NY 14623 USA
[3] Rochester Inst Technol, Comp & Informat Sci, Rochester, NY 14623 USA
来源
2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2011年
基金
美国国家科学基金会;
关键词
Pose; facial expression; manifold; LPP;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Research on facial expression recognition has steadily been moving from analysis of deliberative frontal expressions to analysis of unconstrained spontaneous expressions. This shift has spawned complex 3D models and computationally expensive geometric methods that prevent usage on resource constrained platforms such as smart phones. This paper presents manifold learning techniques for accurate multi-view facial expression on low resolution 2D images. Our results indicate that mixed class local pose and expression manifold methods perform better than global expression techniques and work just as well as fusing together results from multiple manifolds.
引用
收藏
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2008, IEEE INT C AUT FAC G
[2]  
[Anonymous], 2003, ADV NEURAL INFORM PR
[3]  
Cayton L., 2005, Technical Report CS2008-0923
[4]   Natural facial expression recognition using differential-AAM and manifold learning [J].
Cheon, Yeongjae ;
Kim, Daijin .
PATTERN RECOGNITION, 2009, 42 (07) :1340-1350
[5]   Automatic facial expression analysis: a survey [J].
Fasel, B ;
Luettin, J .
PATTERN RECOGNITION, 2003, 36 (01) :259-275
[6]   Facial expression recognition based on local binary patterns [J].
Feng X. ;
Pietikäinen M. ;
Hadid A. .
Pattern Recogn. Image Anal., 2007, 4 (592-598) :592-598
[7]  
Ghodsi A., 2006, DIMENSIONALITY REDUC
[8]   NEW RESEARCH ADVANCES OF FACIAL EXPRESSION RECOGNITION [J].
Liu, Shuai-Shi ;
Tian, Yan-Tao ;
Li, Dong .
PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, :1150-1155
[9]  
Martin C., 2008, IEEE INT C AUT FAC G
[10]  
Ptucha R., 2010, ICIP 2010 HONG KONG