Scaling relations between numerical simulations and physical systems they represent

被引:23
作者
Granot, Jonathan [1 ,2 ,3 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel
[3] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England
关键词
gravitation; hydrodynamics; MHD; methods: miscellaneous; methods: numerical; RAY BURST AFTERGLOWS; COSMOLOGICAL SIMULATIONS; BLAST WAVES; DYNAMICS; HYDRODYNAMICS; ACCELERATION; REFINEMENT; EVOLUTION; RADIATION; JETS;
D O I
10.1111/j.1365-2966.2012.20489.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamical equations describing the evolution of a physical system generally have a freedom in the choice of units, where different choices correspond to different physical systems that are described by the same equations. Since there are three basic physical units, of mass, length and time, there are up to three free parameters in such a rescaling of the units, Nf= 3. In Newtonian hydrodynamics, for example, there are indeed usually three free parameters, Nf= 3. If, however, the dynamical equations contain a universal dimensional constant, such as the speed of light in vacuum c or the gravitational constant G, then the requirement that its value remains the same imposes a constraint on the rescaling, which reduces its number of free parameters by one, to Nf= 2. This is the case, for example, in magnetohydrodynamics or special relativistic hydrodynamics, where c appears in the dynamical equations and forces the length and time units to scale by the same factor, or in Newtonian gravity where the gravitational constant G appears in the equations. More generally, when there are Nudc independent (in terms of their units) universal dimensional constants, then the number of free parameters is Nf= max (0, 3 -Nudc). When both gravity and relativity are included, there is only one free parameter (Nf= 1, as both G and c appear in the equations so that Nudc= 2), and the units of mass, length and time must all scale by the same factor. The explicit rescalings for different types of systems are discussed and summarized here. Such rescalings of the units also hold for discrete particles, e.g. in N-body or particle-in-cell simulations. They are very useful when numerically investigating a large parameter space or when attempting to fit particular experimental results, by significantly reducing the required number of simulations.
引用
收藏
页码:2610 / 2615
页数:6
相关论文
共 34 条
[1]   Polarity Reversals from Paleomagnetic Observations and Numerical Dynamo Simulations [J].
Amit, Hagay ;
Leonhardt, Roman ;
Wicht, Johannes .
SPACE SCIENCE REVIEWS, 2010, 155 (1-4) :293-335
[2]  
Birn J, 2001, J GEOPHYS RES-SPACE, V106, P3715, DOI 10.1029/1999JA900449
[3]  
BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619
[4]   A numerical gamma-ray burst simulation using three-dimensional relativistic hydrodynamics: The transition from spherical to jetlike expansion [J].
Cannizzo, JK ;
Gehrels, N ;
Vishniac, ET .
ASTROPHYSICAL JOURNAL, 2004, 601 (01) :380-390
[5]  
De Colle F., 2011, APJ
[6]   GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS [J].
De Colle, Fabio ;
Granot, Jonathan ;
Lopez-Camara, Diego ;
Ramirez-Ruiz, Enrico .
ASTROPHYSICAL JOURNAL, 2012, 746 (02)
[7]  
Ellis B., 1968, BASIC CONCEPTS MEASU
[8]   FORMATION OF RELATIVISTIC MHD JETS: STATIONARY STATE SOLUTIONS AND NUMERICAL SIMULATIONS [J].
Fendt, Christian ;
Memola, Elisabetta .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (10) :1677-1686
[9]   Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model [J].
Gnedin, OY ;
Kravtsov, AV ;
Klypin, AA ;
Nagai, D .
ASTROPHYSICAL JOURNAL, 2004, 616 (01) :16-26
[10]   Light curves from an expanding relativistic jet [J].
Granot, J ;
Miller, M ;
Piran, T ;
Suen, WM ;
Hughes, PA .
GAMMA-RAY BURSTS IN THE AFTERGLOW ERA, 2001, :312-314