Query Modeling for Entity Search Based on Terms, Categories, and Examples

被引:56
作者
Balog, Krisztian [1 ]
Bron, Marc [2 ]
De Rijke, Maarten [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Comp & Informat Sci, Trondheim, Norway
[2] Univ Amsterdam, ISLA, NL-1012 WX Amsterdam, Netherlands
关键词
Algorithms; Measurement; Performance; Experimentation; Entity retrieval; query modeling; query expansion; generative probabilistic model; EXPANSION; RETRIEVAL; LINKS; L3S;
D O I
10.1145/2037661.2037667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Users often search for entities instead of documents, and in this setting, are willing to provide extra input, in addition to a series of query terms, such as category information and example entities. We propose a general probabilistic framework for entity search to evaluate and provide insights in the many ways of using these types of input for query modeling. We focus on the use of category information and show the advantage of a category-based representation over a term-based representation, and also demonstrate the effectiveness of category-based expansion using example entities. Our best performing model shows very competitive performance on the INEX-XER entity ranking and list completion tasks.
引用
收藏
页数:31
相关论文
共 59 条
[31]  
MEIJ E, 2009, P 8 INT SEM WEB C IS
[32]  
MEIJ E, 2007, P 11 EUR C RES ADV T
[33]  
Metzler D., 2005, P 28 ANN INT ACM SIG, P472, DOI DOI 10.1145/1076034.1076115
[34]  
Mishne G, 2005, LECT NOTES COMPUT SC, V3408, P502
[35]  
Mishne G, 2006, LECT NOTES COMPUT SC, V3936, P289
[36]  
Murugeshan MS, 2008, LECT NOTES COMPUT SC, V4862, P293, DOI 10.1007/978-3-540-85902-4_26
[37]  
PEHCEVSKI J, 2008, P ECIR, P258
[38]  
Petkova Desislava, 2007, INT C INFORM KNOWLED, P731, DOI [10.1145/1321440.1321542, DOI 10.1145/1321440.1321542]
[39]  
RAGHAVAN H, 2004, P ACM SIGKDD WORKSH
[40]  
Rose Daniel E., 2004, P 13 INT C WORLD WID, P13, DOI [DOI 10.1145/988672.988675, 10.1145/988672.988675]