Fully Bayesian spatio-temporal modeling of FMRI data

被引:184
|
作者
Woolrich, MW
Jenkinson, M
Brady, JM
Smith, SM
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Univ Oxford, Dept Engn Sci, Oxford, England
基金
英国医学研究理事会; 英国工程与自然科学研究理事会;
关键词
full Bayes; FMRI; HRF modeling; MCNIC; spatio-temporal noise modeling;
D O I
10.1109/TMI.2003.823065
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a fully Bayesian approach to modeling in functional magnetic resonance imaging (FMRI), incorporating spatio-temporal noise modeling and haemodynamic response function (HRF) modeling. A fully Bayesian approach allows for the uncertainties in the noise and signal modeling to be incorporated together to provide full posterior distributions of the HRF parameters. The noise modeling is achieved via a nonseparable space-time vector autoregressive process. Previous FMRI noise models have either been purely temporal, separable or modeling deterministic trends. The specific form of the noise process is determined using model selection techniques. Notably, this results in the need for a spatially nonstationary and temporally stationary spatial component. Within the same full model, we also investigate the variation of the HRF in different areas of the activation, and for different experimental stimuli. We propose a novel HRF model made up of half-cosines, which allows distinct combinations of parameters to represent characteristics of interest. In addition, to adaptively avoid over-fitting we propose the use of automatic relevance determination priors to force certain parameters in the model to zero with high precision if there is no evidence to support them in the data. We apply the model to three datasets and observe matter-type dependence of the spatial and temporal noise, and a negative correlation between activation height and HRF time to main peak (although we suggest that this apparent correlation may be due to a number of different effects).
引用
收藏
页码:213 / 231
页数:19
相关论文
共 50 条
  • [1] Heirarchical fully Bayesian spatio-temporal analysis of FMRI data
    Woolrich, M
    Brady, M
    Smith, SM
    NEUROIMAGE, 2001, 13 (06) : S287 - S287
  • [2] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [3] Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data
    Caponera, Alessia
    Denti, Francesco
    Rigon, Tommaso
    Sottosanti, Andrea
    Gelfand, Alan
    STUDIES IN NEURAL DATA SCIENCE, 2018, 257 : 111 - 130
  • [4] Bayesian Spatio-temporal Hierarchical Modeling in Wind Speed Data
    Lee, Chee Nian
    Ong, Hong Choon
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [5] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [6] A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data
    Riccio, A
    Barone, G
    Chianese, E
    Giunta, G
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (03) : 554 - 566
  • [7] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [8] Spatio-temporal patterns revealed in denoised fMRI data
    Ogawa, S
    Mitra, PP
    Hu, X
    Ugurbil, K
    VISUALIZATION OF INFORMATION PROCESSING IN THE HUMAN BRAIN: RECENT ADVANCES IN MEG AND FUNCTIONAL MRI, 1996, (47): : 5 - 14
  • [9] Bayesian modeling and clustering for spatio-temporal areal data: An application to Italian unemployment
    Mozdzen, Alexander
    Cremaschi, Andrea
    Cadonna, Annalisa
    Guglielmi, Alessandra
    Kastner, Gregor
    SPATIAL STATISTICS, 2022, 52
  • [10] Review of Sujit Sahu's "Bayesian modeling of spatio-temporal data with R''
    Brown, Patrick E.
    SPATIAL STATISTICS, 2023, 58