GAP SOLITONS IN PERIODIC SCHRODINGER LATTICE SYSTEM WITH NONLINEAR HOPPING

被引:0
作者
Chen, Ming [1 ,2 ]
Pankov, Alexander [3 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Morgan State Univ, Dept Math, Baltimore, MD 21251 USA
基金
中国博士后科学基金;
关键词
Discrete nonlinear Schrodinger equation; nonlinear hopping; gap soliton; linking theorem; periodic approximation; DISCRETE BREATHERS; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as alpha -> 0. Notice that the nonlinear hopping can be sign changing.
引用
收藏
页数:14
相关论文
共 18 条
  • [1] [Anonymous], 1997, Minimax theorems
  • [2] Solitary Waves of the Schrodinger Lattice System with Nonlinear Hopping
    Cheng, Ming
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [3] Discrete breathers
    Flach, S
    Willis, CR
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05): : 181 - 264
  • [4] Discrete breathers - Advances in theory and applications
    Flach, Sergej
    Gorbach, Andrey V.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3): : 1 - 116
  • [5] Wave transmission in nonlinear lattices
    Hennig, D
    Tsironis, GP
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 307 (5-6): : 333 - 432
  • [6] Breathers for the Discrete Nonlinear Schrodinger Equation with Nonlinear Hopping
    Karachalios, N. I.
    Sanchez-Rey, B.
    Kevrekidis, P. G.
    Cuevas, J.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2013, 23 (02) : 205 - 239
  • [7] Kato T., 1985, PERTURBATION THEORY
  • [8] Kevrekidis PG, 2009, SPRINGER TRAC MOD PH, V232, P1, DOI 10.1007/978-3-540-89199-4
  • [9] Pankov, 2005, MILAN J MATH, V73, P259, DOI DOI 10.1007/s00032-005-0047-8
  • [10] Gap solitons in periodic discrete nonlinear Schrodinger equations II: A generalized Nehari manifold approach
    Pankov, A.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (02) : 419 - 430