An optimisation based algorithm for finding the nucleation temperature of cosmological phase transitions

被引:4
作者
Bardsley, Michael [1 ,2 ]
机构
[1] Monash Univ, Sch Phys & Astron, Melbourne, Vic 3800, Australia
[2] Ecole Polytech Fed Lausanne, Lab Particle Phys & Cosmol, Inst Phys, CH-1015 Lausanne, Switzerland
基金
欧洲研究理事会;
关键词
Phase transitions; Bounce solution; Euclidean action; Vacuum stability; Baryogensis; Gravitational waves; FALSE VACUUM; SCALAR FIELD; FATE;
D O I
10.1016/j.cpc.2021.108252
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the OptiBounce algorithm, a new and fast method for finding the bounce action for cosmological phase transitions. This is done by direct solution of the "reduced" minimisation problem proposed by Coleman, Glaser, and Martin. Using a new formula for the action, our method avoids the rescaling step used in other algorithms based on this formulation. The bounce path is represented using a pseudo-spectral Gauss-Legendre collocation scheme leading to a non-linear optimisation problem over the collocation coefficients. Efficient solution of this problem is enabled by recent advances in automatic differentiation, sparse matrix representation and large scale non-linear programming. The algorithm is optimised for finding nucleation temperatures by sharing model initialisation work between instances of the calculation when operating at different temperatures. We present numerical results on a range of potentials with up to 20 scalar fields, demonstrating O(1%) agreement with existing codes and highly favourable performance characteristics. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 48 条
[1]   Cosmology from random multifield potentials [J].
Aazami, A ;
Easther, R .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (03)
[2]   Semi-analytic techniques for calculating bubble wall profiles [J].
Akula, Sujeet ;
Balazs, Csaba ;
White, Graham A. .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (12)
[3]   Collider and gravitational wave complementarity in exploring the singlet extension of the standard model [J].
Alves, Alexandre ;
Ghosh, Tathagata ;
Guo, Huai-Ke ;
Sinha, Kuver ;
Vagie, Daniel .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
[4]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[5]   Strong first-order phase transitions in the NMSSM - a comprehensive survey [J].
Athron, Peter ;
Balazs, Csaba ;
Fowlie, Andrew ;
Pozzo, Giancarlo ;
White, Graham ;
Zhang, Yang .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
[6]   Bubbleprofiler: Finding the field profile and action for cosmological phase transitions [J].
Athron, Peter ;
Balazs, Csaba ;
Bardsley, Michael ;
Fowlie, Andrew ;
Harries, Dylan ;
White, Graham .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 244 :448-468
[7]   Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the standard model [J].
Balazs, Csaba ;
Fowlie, Andrew ;
Mazumdar, Anupam ;
White, Graham A. .
PHYSICAL REVIEW D, 2017, 95 (04)
[8]   FATE OF FALSE VACUUM .2. 1ST QUANTUM CORRECTIONS [J].
CALLAN, CG ;
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 16 (06) :1762-1768
[9]   Detecting gravitational waves from cosmological phase transitions with LISA: an update [J].
Caprini, Chiara ;
Chala, Mikael ;
Dorsch, Glauber C. ;
Hindmarsh, Mark ;
Huber, Stephan J. ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Rummukainen, Kari ;
Schwaller, Pedro ;
Servant, Geraldine ;
Tranberg, Anders ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03)
[10]   Bounce configuration from gradient flow [J].
Chigusa, So ;
Moroi, Takeo ;
Shoji, Yutaro .
PHYSICS LETTERS B, 2020, 800