Genome-wide genetic marker discovery and genotyping using next-generation sequencing

被引:1781
作者
Davey, John W. [1 ]
Hohenlohe, Paul A. [2 ]
Etter, Paul D. [3 ]
Boone, Jason Q. [4 ]
Catchen, Julian M. [2 ]
Blaxter, Mark L. [1 ,5 ]
机构
[1] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland
[2] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA
[3] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[4] Floragenex Inc, Eugene, OR 97403 USA
[5] Univ Edinburgh, GenePool Genom Facil, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland
基金
美国国家卫生研究院; 英国自然环境研究理事会; 英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
NUCLEOTIDE POLYMORPHISM DISCOVERY; THROUGHPUT SNP DISCOVERY; REDUCED REPRESENTATION; WHOLE-GENOME; LINKAGE MAP; IDENTIFICATION; CONSTRUCTION; RAINBOW; ASSAY;
D O I
10.1038/nrg3012
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The advent of next-generation sequencing (NGS) has revolutionized genomic and transcriptomic approaches to biology. These new sequencing tools are also valuable for the discovery, validation and assessment of genetic markers in populations. Here we review and discuss best practices for several NGS methods for genome-wide genetic marker development and genotyping that use restriction enzyme digestion of target genomes to reduce the complexity of the target. These new methods-which include reduced-representation sequencing using reduced-representation libraries (RRLs) or complexity reduction of polymorphic sequences (CRoPS), restriction-site-associated DNA sequencing (RAD-seq) and low coverage genotyping-are applicable to both model organisms with high-quality reference genome sequences and, excitingly, to non-model species with no existing genomic data.
引用
收藏
页码:499 / 510
页数:12
相关论文
共 50 条
[31]   High-throughput SNP discovery in the rabbit (Oryctolagus cuniculus) genome by next-generation semiconductor-based sequencing [J].
Bertolini, F. ;
Schiavo, G. ;
Scotti, E. ;
Ribani, A. ;
Martelli, P. L. ;
Casadio, R. ;
Fontanesi, L. .
ANIMAL GENETICS, 2014, 45 (02) :304-307
[32]   APPLICATIONS OF NEXT-GENERATION SEQUENCING Sequencing technologies - the next generation [J].
Metzker, Michael L. .
NATURE REVIEWS GENETICS, 2010, 11 (01) :31-46
[33]   Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing [J].
Li, Guo ;
Liu, Yong ;
Liu, Chao ;
Su, Zhongwu ;
Ren, Shuling ;
Wang, Yunyun ;
Deng, Tengbo ;
Huang, Donghai ;
Tian, Yongquan ;
Qiu, Yuanzheng .
BMC CANCER, 2016, 16
[34]   Next-generation sequencing for mitochondrial diseases: A wide diagnostic spectrum [J].
Vasta, Valeria ;
Merritt, J. Lawrence, II ;
Saneto, Russell P. ;
Hahn, Si Houn .
PEDIATRICS INTERNATIONAL, 2012, 54 (05) :585-601
[35]   Next-generation sequencing for lung cancer [J].
Wu, Kehua ;
Huang, R. Stephanie ;
House, Larry ;
Cho, William Chi .
FUTURE ONCOLOGY, 2013, 9 (09) :1323-1336
[36]   Next-generation sequencing in childhood disorders [J].
Schnekenberg, Ricardo Parolin ;
Nemeth, Andrea H. .
ARCHIVES OF DISEASE IN CHILDHOOD, 2014, 99 (03) :284-+
[37]   Genome, Exome, and Targeted Next-Generation Sequencing in Neonatal Diabetes [J].
De Franco, Elisa ;
Ellard, Sian .
PEDIATRIC CLINICS OF NORTH AMERICA, 2015, 62 (04) :1037-+
[38]   Genome-Wide Single Nucleotide Polymorphism Discovery and the Construction of a High-Density Genetic Map for Melon (Cucumis melo L.) Using Genotyping-by-Sequencing [J].
Chang, Che-Wei ;
Wang, Yu-Hua ;
Tung, Chih-Wei .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[39]   A genome scan for selection signatures in Taihu pig breeds using next-generation sequencing [J].
Wang, Z. ;
Sun, H. ;
Chen, Q. ;
Zhang, X. ;
Wang, Q. ;
Pan, Y. .
ANIMAL, 2019, 13 (04) :683-693
[40]   ABO genotyping with next-generation sequencing to resolve heterogeneity in donors with serology discrepancies [J].
Wu, Ping Chun ;
Lin, Yin-Hung ;
Tsai, Lei Fang ;
Chen, Ming Hung ;
Chen, Pei-Lung ;
Pai, Shun-Chung .
TRANSFUSION, 2018, 58 (09) :2232-2242