DNA mechanics

被引:64
作者
Benham, CJ [1 ]
Mielke, SP
机构
[1] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[2] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA
[3] Lawrence Livermore Natl Lab, Div Biomed, Biosci Directorate, Livermore, CA 94551 USA
关键词
DNA topology; DNA supercoiling; DNA modeling; equilibria; dynamics;
D O I
10.1146/annurev.bioeng.6.062403.132016
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We review the history of DNA mechanics and its analysis. We evaluate several methods to analyze the structures of superhelical DNA molecules, each predicated on the assumption that DNA can be modeled with reasonable accuracy as an extended, linearly elastic polymer. Three main approaches are considered: mechanical equilibrium methods, which seek to compute minimum energy conformations of topologically constrained molecules; statistical mechanical methods, which seek to compute the Boltzmann distribution of equilibrium conformations that arise in a finite temperature environment; and dynamic methods, which seek to compute deterministic trajectories of the helix axis by solving equations of motion. When these methods include forces of self-contact, which prevent strand passage and preserve the topological constraint, each predicts plectonemically interwound structures. On the other hand, the extent to which these mechanical methods reliably predict energetic and thermodynamic properties of superhelical molecules is limited, in part because of their inability to account explicitly for interactions involving solvent. Monte Carlo methods predict the entropy associated with supercoiling to be negative, in conflict with a body of experimental evidence that finds it is large and positive, as would be the case if superhelical deformations significantly disrupt the ordering of ambient solvent molecules. This suggests that the large-scale conformational properties predicted by elastomechanical models are not the only ones determining the energetics and thermodynamics of supercoiling. Moreover, because all such models that preserve the topological constraint correctly predict plectonemic interwinding, despite these and other limitations, this constraint evidently dominates energetic and thermodynamic factors in determining supercoil geometry. Therefore, agreement between predicted structures and structures obtained experimentally, for example, by electron microscopy, does not in itself provide evidence for the correctness or completeness of any given model of DNA mechanics.
引用
收藏
页码:21 / 53
页数:33
相关论文
共 98 条
[1]   DIRECT VISUALIZATION OF SUPERCOILED DNA-MOLECULES IN SOLUTION [J].
ADRIAN, M ;
TENHEGGELERBORDIER, B ;
WAHLI, W ;
STASIAK, AZ ;
STASIAK, A ;
DUBOCHET, J .
EMBO JOURNAL, 1990, 9 (13) :4551-4554
[2]   BENDING AND TWISTING DYNAMICS OF SHORT LINEAR DNAS - ANALYSIS OF THE TRIPLET ANISOTROPY DECAY OF A 209-BASE PAIR FRAGMENT BY BROWNIAN SIMULATION [J].
ALLISON, S ;
AUSTIN, R ;
HOGAN, M .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (07) :3843-3854
[3]   STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III [J].
Avery, Oswald T. ;
MacLeod, Colin M. ;
McCarty, Maclyn .
JOURNAL OF EXPERIMENTAL MEDICINE, 1944, 79 (02) :137-158
[4]   THEORY OF TWISTING AND BENDING OF CHAIN MACROMOLECULES - ANALYSIS OF THE FLUORESCENCE DEPOLARIZATION OF DNA [J].
BARKLEY, MD ;
ZIMM, BH .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06) :2991-3007
[5]  
BAUER W, 1970, Journal of Molecular Biology, V47, P419, DOI 10.1016/0022-2836(70)90312-8
[6]   TWIST AND WRITHE OF A DNA LOOP CONTAINING INTRINSIC BENDS [J].
BAUER, WR ;
LUND, RA ;
WHITE, JH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :833-837
[7]   THE FREE-ENERGY, ENTHALPY AND ENTROPY OF NATIVE AND OF PARTIALLY DENATURED CLOSED CIRCULAR DNA [J].
BAUER, WR ;
BENHAM, CJ .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (04) :1184-1196
[8]   THE TWIST, WRITHE AND OVERALL SHAPE OF SUPERCOILED DNA CHANGE DURING COUNTERION-INDUCED TRANSITION FROM A LOOSELY TO A TIGHTLY INTERWOUND SUPERHELIX - POSSIBLE IMPLICATIONS FOR DNA-STRUCTURE IN-VIVO [J].
BEDNAR, J ;
FURRER, P ;
STASIAK, A ;
DUBOCHET, J ;
EGELMAN, EH ;
BATES, AD .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (03) :825-847
[9]   ONSET OF WRITHING IN CIRCULAR ELASTIC POLYMERS [J].
BENHAM, CJ .
PHYSICAL REVIEW A, 1989, 39 (05) :2582-2586
[10]   ELASTIC MODEL OF THE LARGE-SCALE STRUCTURE OF DUPLEX DNA [J].
BENHAM, CJ .
BIOPOLYMERS, 1979, 18 (03) :609-623