Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions

被引:17
作者
Eastwood, MP [1 ]
Gebhard, F
Kalinowski, E
Nishimoto, S
Noack, RM
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[3] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany
关键词
D O I
10.1140/epjb/e2003-00266-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We calculate the density of states in the half-filled Hubbard model on a Bethe lattice with infinite connectivity. Based on our analytical results to second order in t/U, we propose a new 'Fixed-Energy Exact Diagonalization' scheme for the numerical study of the Dynamical Mean-Field Theory. Corroborated by results from the Random Dispersion Approximation, we find that the gap opens at U-c=4.43+/-0.05. Moreover, the density of states near the gap increases algebraically as a function of frequency with an exponent alpha=1/2 in the insulating phase. We critically examine other analytical and numerical approaches and specify their merits and limitations when applied to the Mott-Hubbard insulator.
引用
收藏
页码:155 / 175
页数:21
相关论文
共 53 条
[1]   NEW APPROACH TO THE THEORY OF SUPEREXCHANGE INTERACTIONS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1959, 115 (01) :2-13
[2]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[3]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[4]   SINGLE-PARTICLE EXCITATIONS IN MAGNETIC INSULATORS [J].
BRINKMAN, WF ;
RICE, TM .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (05) :1324-+
[5]   Linearized dynamical mean-field theory for the Mott-Hubbard transition [J].
Bulla, R ;
Potthoff, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (02) :257-264
[6]   Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model [J].
Bulla, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (01) :136-139
[7]   Finite-temperature numerical renormalization group study of the Mott transition [J].
Bulla, R ;
Costi, TA ;
Vollhardt, D .
PHYSICAL REVIEW B, 2001, 64 (04)
[8]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[9]  
Eastwood M.P., 1998, THESIS OXFORD U
[10]  
Economou E., 1983, Green's Functions in Quantum Physics