Uniform Estimates for the Fourier Transform of Surface Carried Measures in R3 and an Application to Fourier Restriction

被引:34
作者
Ikromov, Isroil A. [2 ]
Mueller, Detlef [1 ]
机构
[1] CA Univ Kiel, D-24098 Kiel, Germany
[2] Samarkand State Univ, Dept Math, Samarkand 140104, Uzbekistan
关键词
Oscillatory integral; Newton diagram; Fourier restriction; HARMONIC-ANALYSIS; INTEGRALS; HYPERSURFACES; CURVATURE; DECAY;
D O I
10.1007/s00041-011-9191-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a hypersurface in R-3 which is the graph of a smooth, finite type function phi, and let mu = rho d sigma be a surface carried measure on S, where d sigma denotes the surface element on S and rho a smooth density with sufficiently small support. We derive uniform estimates for the Fourier transform (mu) over cap of mu, which are sharp except for the case where the principal face of the Newton polyhedron of phi, when expressed in adapted coordinates, is unbounded. As an application, we prove a sharp L-p-L-2 Fourier restriction theorem for S in the case where the original coordinates are adapted to phi. This improves on earlier joint work with M. Kempe.
引用
收藏
页码:1292 / 1332
页数:41
相关论文
共 21 条
[1]   TRIGONOMETRIC INTEGRALS [J].
ARHIPOV, GI ;
KARACUBA, AA ;
CUBARIKOV, VN .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 15 (02) :211-239
[2]  
ARNOLD VI, 1973, RUSS MATH SURVS, V28, P19, DOI 10.1070/RM1973v028n05ABEH001609
[3]   Oscillating integrals and Newton polyhedra [J].
Denef, J ;
Nicaise, J ;
Sargos, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 95 (1) :147-172
[4]  
DEVERDIERE IC, 1974, ANN SCI ECOLE NORM S, V10, P559
[5]   BANACH ALGEBRA A(GAMMA) FOR SMOOTH SETS GAMMA SUBSET OF RN [J].
DOMAR, Y .
COMMENTARII MATHEMATICI HELVETICI, 1977, 52 (03) :357-371
[6]   OSCILLATORY INTEGRALS, LAGRANGE IMMERSIONS AND UNFOLDING OF SINGULARITIES [J].
DUISTERMAAT, JJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (02) :207-281
[7]  
Erdelyi A., 1956, Asymptotic Expansions
[8]   Decay of the Fourier transform of surfaces with vanishing curvature [J].
Erdos, Laszlo ;
Salmhofer, Manfred .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) :261-294
[9]   The asymptotic behavior of degenerate oscillatory integrals in two dimensions [J].
Greenblatt, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (06) :1759-1798
[10]   PRINCIPAL CURVATURE AND HARMONIC-ANALYSIS [J].
GREENLEAF, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :519-537